
ANALYSIS OF DIGITAL SEARCH TREES

BUILT ON A GENERAL SOURCE

Kanal Hun and Brigitte Vallée,

GREYC (CNRS and University of Caen)

Work based on an idea of Philippe,

begun with him at the end of 2010

Dedicated to his memory.

Journées ALEA, Mars 2013



ANALYSIS OF DIGITAL SEARCH TREES

BUILT ON A GENERAL SOURCE

Kanal Hun and Brigitte Vallée,

GREYC (CNRS and University of Caen)

Work based on an idea of Philippe,

begun with him at the end of 2010

Dedicated to his memory.

Journées ALEA, Mars 2013



ANALYSIS OF DIGITAL SEARCH TREES

BUILT ON A GENERAL SOURCE

Kanal Hun and Brigitte Vallée,

GREYC (CNRS and University of Caen)

Work based on an idea of Philippe,

begun with him at the end of 2010

Dedicated to his memory.

Journées ALEA, Mars 2013



ANALYSIS OF DIGITAL SEARCH TREES

BUILT ON A GENERAL SOURCE

Kanal Hun and Brigitte Vallée,

GREYC (CNRS and University of Caen)

Work based on an idea of Philippe,

begun with him at the end of 2010

Dedicated to his memory.

Journées ALEA, Mars 2013



Digital Search Tree is a fundamental data structure in Computer Science.

It underlies the compression algorithms of Lempel Ziv type.

It contains the “phrases” created by the algorithm.

This is already analyzed when the text is emitted by simple sources.

– First (seminal) study :

Flajolet and Sedgewick (1986) for the unbiased binary source.

– Then, for memoryless sources and Markov chains, (1990–2000)

Works of Jacquet, Louchard, Prodinger, Szpankowski, Tang.

Important to analyze this structure under general models of sources

(more realistic, more correlated)

This realistic analysis is successful for two other types of trees :

– Tries and BST, when they are built on general sources

– Why not DST, since it is a mixing of these two structures?

This talk : Analysis of Digital Search Trees

when they are built on words emitted by a general source.
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I. Trees.



Description of the DST structure (I)

On the alphabet Σ := {a, b}, consider the sequence of six words

X1 = bbabb,X2 = abbaa,X3 = babba,X4 = ababb,X5 = aaaab,X6 = abbba

and the digital search tree built on this sequence
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Description of the DST structure (II)

X = an ordered sequence of infinite words on the alphabet Σ := {a, b}
X := {X1, X2, . . . , Xn}

The first word of the sequence X is placed at the root.

Root [DST (X )] := First (X ).

There are two subtrees built with the sequence Y := X \ {First(X )},

– The left subtree contains the words of Y which begin with a

Y(a) = the subsequence of Y formed with words which begin with a

Left [DST (X )] := DST (Y(a)).

– The right subtree contains the words of Y which begin with b.

Y(b) = the subsequence of Y formed with words which begin with b

Right [DST (X )] := DST (Y(b)).
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The three tree structures and their (internal or external) path length

For Σ := {a, b}, consider the case of the sequence of six words

X1 = bbabb,X2 = abbaa,X3 = babba,X4 = ababb,X5 = aaaab,X6 = abbba

DST Trie Symbol-BST

2 + 2× 2 + 1× 3 3× 2 + 1× 3 + 2× 4 1 + 3 + 4 + 5 + 6

= 9 = 17 = 19
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General analysis of the shape of a tree structure

built on n infinite words independently emitted from the same source S

A full node := a node which contains a word

– The full nodes for BST and DST : internal nodes

– The full nodes for Tries: external nodes

The depth of a node: the number of nodes between the node and the root.

Main parameters of interest

– the path length Ln := the sum of the depths of the full nodes

– the profile Bn,k := number of full nodes at depth k

– or the typical depth Dn defined by Pr[Dn = k] =
1

n
Bn,k.

The probabilistic behaviour of data structures built on words depends on:

– the strategy of the data structure which separates words

– the mechanism which emits words.

For applications, importance to deal with a general source S
Results already obtained for DST in the case of simple sources.

To be compared to Tries and BST (results obtained for general sources)
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A source:= a random mechanism which emits symbols from alphabet Σ,

The time is discrete t = 0, t = 1, . . .

Xi := the symbol emitted at time t = i

When time evolves, the source produces (infinite) words of ΣN.

The source is given by the sequence (X0, X1, . . . , Xn, Xn+1 . . .)

Simple sources: sources with weak correlations between successive symbols

Memoryless source :

The variables Xi are independent,

with the same distribution defined by pi := Pr[Xn = i] (i ∈ Σ)

Markov chain:

The only dependence is between consecutive Xn’s

defined by the transition matrix pi|j := Pr[Xn+1 = i |Xn = j]

A general source may have many, strong correlations between its symbols.

For w ∈ Σ?, pw := probability that a word begins with the prefix w.

The set {pw, w ∈ Σ?} defines the source S.
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Analyses of Tries and Symbol–BST built on general sources

[Clément, Flajolet, V. (2001), Clément, Flajolet, Fill, V. (2009)]

Consider n words independently emitted by a general tame source S. Then:

(i) The mean path-length of the Trie satisfies L[T ]
n ∼

1

hS
n log n.

(ii) The mean symbol path-length of the BST satisfies L[B]
n ∼ 1

hS
n log2 n.

Here, hS is the entropy hS of the source S, defined as

hS := lim
k→∞

−1

k

∑
w∈Σk

pw log pw

 ,
where pw is the probability that a word begins with prefix w.

The remainder term depends on the “tameness” region of the source.
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Previous results for a DST built on a simple source

Simple source = memoryless source or ergodic Markov chain.

To be compared to results for a Trie

Consider n words independently emitted by a simple source S. Then:

The mean internal path-length of the Digital Search Tree satisfies

L[D]
n =

1

hS
n log n+ nAS +R[D]

n

The mean external path length of the Trie satisfies

L[T ]
n =

1

hS
n log n+ nBS +R[T ]

n

The difference AS −BS is always negative for any simple source.

The remainder terms Rn are of the same type for the two structures,

– they depend on arithmetic properties of source probabilities.

– they possibly contain a periodic term

For the binary unbiased source: AS −BS = −

 1

log 2
+
∑
k≥1

1

2k − 1
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Our main result on DST’s.

Consider a super-tame source S. Then, the mean internal path-length of

a digital search tree built on n words independently emitted by S satisfies

L[D]
n =

1

hS
n log n+AS n+R[D]

n .

The constant AS is expressed with characteristics of S
The remainder term depends on the (super)-tameness of the source,

It possibly contains a periodic term.

To be compared with the previous results obtained for tries.

Consider a general tame source S. Then, the mean path-length of a trie

built on n words independently emitted by S satisfies

L[T ]
n =

1

hS
n log n+BS n+R[T ]

n

We obtain an expression for AS −BS which proves that AS < BS
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Consider a general tame source S. Then, the mean path-length of a trie

built on n words independently emitted by S satisfies

L[T ]
n =

1

hS
n log n+BS n+R[T ]

n

We obtain an expression for AS −BS which proves that AS < BS



II. Sources.



A main analytical object related to any source:

the Dirichlet generating functions of the source

Λ(s) :=
∑
w∈Σ?

psw, Λk(s) =
∑
w∈Σk

psw,

Λ =
∑
k≥0

Λk


Remark: Λk(1) = 1 for any k, Λ(1) =∞.

– they encapsulate the main probabilistic properties of the source

– they translate them into analytic properties

For instance, the entropy hS ,

h(S) := lim
k→∞

−1

k

∑
w∈Σk

pw log pw = lim
k→∞

[
−1

k
Λ′k(1)

]
– they intervene in probabilistic analysis of algorithms and data structures.
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A main analytical object related to any source:

the Dirichlet series of probabilities, Λ(s) :=
∑
w∈Σ?

psw

Memoryless sources, with probabilities (pi)

Λ(s) =
1

1− λ(s)
with λ(s) =

r∑
i=1

psi

Markov chains, defined by – the vector R of initial probabilities (ri)

– and the transition matrix P := (pj|i)

Λ(s) = 1 + tRs(I −Ps)
−11 with Ps = (psj|i), Rs = (rsi ).

And for a general source?

Does Λ(s) admit a nice alternative expression?
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A general source S and its shifted sources.

pw := the probability that a word of S begins with the prefix w ∈ Σ?

The source S defines a sequence of sources S(u) (for u ∈ Σ?)

For u ∈ Σ? with pu 6= 0, the source S(u) = S|u is a shifted source

– which gathers all the words of S which begin with u ∈ Σ?,

– from which the prefix u is removed.

The source S(u) is completely defined

– by the fundamental (conditional) probabilities pw|u,

– when w is any finite prefix for which u ≤ w.

In this case, w can be written as w = u · v

The conditional probabilities pw|u = p(u.v)|u are denoted as qv|u.

These are the fundamental probabilities of the source S(u).
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The generalized transition matrix of a source S

The generalized transition matrix P of the source S ...

extends the transition matrix of a Markov chain.

This is an infinite matrix, whose rows and columns are indexed by Σ?

The non zero coefficients at the row u are located at the columns u.i

they are equal to: P(u, u · i) =
pu·i
pu

= qi|u

The matrix P is the transition matrix associated to the graph of the source.

The states are the sources S(u), the transitions are u→ u · i.
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Sometimes, the graph (and thus the matrix) can be pruned:

– One only keeps the sources S(u) which have a different distribution

– For a simple source, this provides a finite graph (a finite matrix)

For s ∈ C, the matrix Ps is obtained from P

by raising its coefficients to the power s.

For k ∈ N, the non zero coefficients of matrix Pks at the row u

are located at the columns u.α (for α ∈ Σk) and equal psu.α|u = qsα|u.

For a general source, with its generalized transition matrix Ps, one has

Λ(s) = tE · (I −Ps)
−1[1], with tE := (1, 0, 0 . . .)
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III. Analyses of tree data structures

built on general sources.



A common strategy for the analysis of the three types of trees:

Two dictionaries –algebraic and analytic–

Source S, Mixed Dirichet series The mean value Ln

its characteristics (A) $(s) (B) of the path length

and =⇒ depends both =⇒ of the data structure

the data structure, on the source when built

its recursive definition and the data structure on n words of S

(A) Derivation for $(s)

First obtain a (system of) functional equations

satisfied by the Poisson generating function B(z) of the path length

The mixed Dirichlet series $(s) is related to the Mellin transform of B(z).

It involves Λ(s) or more generally the quasi-inverse (I −Ps)
−1.

(B) Ln =

n∑
k=2

(−1)k
(
n

k

)
$(k)

An exact formula, from which the asymptotics can be derived.

With the Rice formula, it depends on “tameness” properties of $(s)

closely related to tameness properties of the source
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Mixed Dirichlet series $(s) of tree structures – (I) Tries, and Symbol -BSTs

For Tries and Symbol-BST’s, the series $(s) is only expressed with Λ(s):

$T (s) = sΛ(s), $B(s) =
1

s(s− 1)
Λ(s),

Remind: Λ(s) = tE (I −Ps)
−1[1], with tE := (1, 0, 0 . . .).

Tameness of the source:

Existence of a region R on the left of the vertical line <s = 1 where Λ(s)

– is meromorphic with a simple pole at s = 1

– of polynomial growth for |=s| → ∞

Then Rice’s formula may be applied to $(s).

This gives the previously known results on Tries and Symbol–BST’s
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Mixed Dirichlet series $(s) of tree structures – (II) DSTs (new...)

For DST’s, we prove that the series $(s) is also expressed with (I−Ps)−1,

more precisely with the infinite product

Qs := (I −Ps)
−1(I −Ps+1)−1 . . . (I −Ps+k)−1 . . . ,

under the form $D(s) = tEQsQ
−1
2 [1] = tE(I−Ps)−1Qs+1Q

−1
2 [1]

Finally: $D(s) = Λ(s) +A(s), with

Λ(s) = tE (I −Ps)
−1[1], A(s) = tE (I −Ps)

−1[Qs+1 −Q2][Q−1
2 ][1]

Super-tameness of the source:

– Existence of a region R on the left of the vertical line <s = 1

– Existence of a convenient functional space where

– s 7→ (I −Ps)
−1 is meromorphic with a simple pole at s = 1

– where s 7→ ||(I −Ps)
−1|| is of polynomial growth for |=s| → ∞

Then Rice’s formula may be applied to $(s) and the theorem is proven.
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IV. Some steps of the proof.



We consider a DST built on n words independently emitted by a source S.

We study the random variable path length `n := `n(S), and deal with

all the sources S(w) and all the random variables `
(w)
n := `n(S(w))

`
(w)
n = the path length of a DST of size n built on S(w),

depends on two indices:

– the cardinality n ∈ N
– the prefix w ∈ Σ? which defines the source S(w).

For Σ := {0, 1}, the basic recurrence for the sequence `
(w)
n is

`n
(w) = n− 1 + `Kn

(w.0) + Pn−1−Kn
(w.1)

The number of nodes Kn := K
(w)
n in the left subtree

follows a binomial law of parameter q0|w.

Pr[Kn
(w) = k] =

(
n− 1

k

)
qk0|w q

n−1−k
1|w

Then, the basic recurrence for the expectations Ln
(w) := E[`

(w)
n ] is

Ln
(w) = n− 1 +

n−1∑
k=0

(
n− 1

k

)
qk0|w q

n−1−k
1|w

(
L

(w·0)
k + L

(w·1)
n−1−k

)
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n ] is

Ln
(w) = n− 1 +

n−1∑
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n− 1
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)
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n−1−k
1|w
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The Poisson generating functions B(w)(z) := e−z
∑
n≥0

L(w)
n

zn

n!
satisfy

d

dz
B(w)(z) +B(w)(z) = z +B(w.0)(q0|wz) +B(w.1)(q1|wz).

Easy extension to any alphabet Σ:

d

dz
B(w)(z) +B(w)(z) = z +

∑
i∈Σ

B(w.i)(qi|wz).

This system of functional equations involves both

– the derivation d/dz

– the change of variables z 7→ qz

– the shift on words w 7→ w.i

In comparison, for tries, the derivation does not occur.
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Different possible steps of the analysis

Basic equations
d

dz
B(w)(z) +B(w)(z) = z +

∑
i∈Σ

B(w.i)(qi|wz).

Laplace

wwww�
Exact expression of B(z) =⇒ AlgDePo =⇒ Exact expression of Ln

B(z) =
∑
w∈Σ?

δ(v)[e−zpv−1+zpv] Ln =
n∑
k=2

(−1)k
(
n

k

)
$D(k)

δ(v) =
1

pv

∑
w≥v

pw
∏
α≤w,
α6=v

1

1− pvp−1
α

$D(s) =
∑
w∈Σ?

δ(v)psv,

Mellin

wwww�
wwww� Rice

Alternative expression of $(s) Asymptotics of Ln

$D(s) = tEQsQ
−1
2 [1] with tameness of (I −Ps)

−1
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Various extensions

– Already studied : the distribution of the typical depth.

Main result. For a source assumed to be hyper-tame and log–convex, the

typical depth of a DST follows an asymptotic gaussian law.

The asymptotic mean values of the mean and the variance involve the

same constants as in the case of tries.

– To be done :

– Return to the analysis of the Lempel Ziv algorithm.

– Make precise all the tameness properties,

(tame, super-tame, hyper-tame)

even in the case of simple sources

Work in progress with E. Cesaratto, J. Clément.
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