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Algorithms for analytic combinatorics:

Enumeration in Quasi-Optimal Complexity
Exponential and Ordinary Oracle
+ Differential Systems

Well-defined input provided by species theory.

Bonus: Unified framework for constructible combinatorial classes.
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I. 2. ADMISSIBLE CONSTRUCTIONS AND SPECIFICATIONS 33

combinatorial class (there are finitely many elements of size n, for each n), then the correspond-
ing OGFs satisfy A[∞](z) = lim j→∞ A[ j](z) in the formal topology (Appendix A.5: Formal
power series, p. 730). !

Definition I.7. A specification for an r–tuple #A = (A(1), . . . ,A(r)) of classes is a
collection of r equations,

(29)





A(1) = !1(A(1), . . . ,A(r))
A(2) = !2(A(1), . . . ,A(r))

· · ·
A(r) = !r (A(1), . . . ,A(r))

where each !i denotes a term built from the A using the constructions of disjoint

union, cartesian product, sequence, powerset, multiset, and cycle, as well as the initial

classes E (neutral) and Z (atomic).

We also say that the system is a specification of A(1). A specification for a com-
binatorial class is thus a sort of formal grammar defining that class. Formally, the sys-
tem (29) is an iterative or non-recursive specification if it is strictly upper-triangular,
that is, A(r) is defined solely in terms of initial classes Z, E ; the definition of A(r−1)
only involvesA(r), and so on; in that case, by back substitutions, it is apparent that for

an iterative specification, A(1) can be equivalently described by a single term involv-

ing only the initial classes and the basic constructors. Otherwise, the system is said to

be recursive. In the latter case, the semantics of recursion is identical to the one intro-

duced in the case of trees: start with the “empty” vector of classes, #A[0] := (∅, . . . ,∅),
iterate #A[ j+1] = #![ #A[ j]

]
, and finally take the limit.

There is an alternative and convenient way to visualize these notions. Given a

specification of the form (29), we can associate its dependency (di)graph " to it as
follows. The set of vertices of " is the set of indices {1, . . . , r}; for each equation
A(i) = #i (A(1), . . . ,A(r)) and for each j such that A( j) appears explicitly on the

right-hand side of the equation, place a directed edge (i → j) in ". It is then eas-
ily recognized that a class is iterative if the dependency graph of its specification is
acyclic; it is recursive is the dependency graph has a directed cycle. (This notion will

serve to define irreducible linear systems, p. 341, and irreducible polynomial systems,
p. 482, which enjoy strong asymptotic properties.)

Definition I.8. A class of combinatorial structures is said to be constructible or speci-
fiable iff it admits a (possibly recursive) specification in terms of sum, product, se-
quence, set, multiset, and cycle constructions.

At this stage, we have therefore available a specification language for combina-
torial structures which is some fragment of set theory with recursion added. Each

constructible class has by virtue of Theorem I.1 an ordinary generating function for

which functional equations can be produced systematically. (In fact, it is even possible

to use computer algebra systems in order to compute it automatically! See the article

by Flajolet, Salvy, and Zimmermann [255] for the description of such a system.)

Theorem I.2 (Symbolic method, unlabelled universe). The generating function of a
constructible class is a component of a system of functional equations whose terms
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Examples H(0, 0) = 0

Joyal’s conditions:

Y = Seq(Z) 3 Y = Seq(Z Seq(Z)) 3 Y = Seq(Seq(Z)) 7
H0(0) = 0 H0(0) = 0 H0(0) not defined!

Y = Z Y 3 Y = Z + Z Y 3 Y = Z + Y 7
H0(0, 0) = 0 H0(0, 0) = 0 H0(0, 0) = 1

With our conditions:

Y = Z Y 7 because Y = 0.

How to detect 0 coordinates:

Look for 0 in Hm(Z, 0).

Examples:

8
><
>:

A = B
B = C
C = Z

8
><
>:

A = B
B = Z + C
C = ZC
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combinatorial class (there are finitely many elements of size n, for each n), then the correspond-
ing OGFs satisfy A[∞](z) = lim j→∞ A[ j](z) in the formal topology (Appendix A.5: Formal
power series, p. 730). !

Definition I.7. A specification for an r–tuple #A = (A(1), . . . ,A(r)) of classes is a
collection of r equations,

(29)





A(1) = !1(A(1), . . . ,A(r))
A(2) = !2(A(1), . . . ,A(r))

· · ·
A(r) = !r (A(1), . . . ,A(r))

where each !i denotes a term built from the A using the constructions of disjoint

union, cartesian product, sequence, powerset, multiset, and cycle, as well as the initial

classes E (neutral) and Z (atomic).

We also say that the system is a specification of A(1). A specification for a com-
binatorial class is thus a sort of formal grammar defining that class. Formally, the sys-
tem (29) is an iterative or non-recursive specification if it is strictly upper-triangular,
that is, A(r) is defined solely in terms of initial classes Z, E ; the definition of A(r−1)
only involvesA(r), and so on; in that case, by back substitutions, it is apparent that for

an iterative specification, A(1) can be equivalently described by a single term involv-

ing only the initial classes and the basic constructors. Otherwise, the system is said to

be recursive. In the latter case, the semantics of recursion is identical to the one intro-

duced in the case of trees: start with the “empty” vector of classes, #A[0] := (∅, . . . ,∅),
iterate #A[ j+1] = #![ #A[ j]

]
, and finally take the limit.

There is an alternative and convenient way to visualize these notions. Given a

specification of the form (29), we can associate its dependency (di)graph " to it as
follows. The set of vertices of " is the set of indices {1, . . . , r}; for each equation
A(i) = #i (A(1), . . . ,A(r)) and for each j such that A( j) appears explicitly on the

right-hand side of the equation, place a directed edge (i → j) in ". It is then eas-
ily recognized that a class is iterative if the dependency graph of its specification is
acyclic; it is recursive is the dependency graph has a directed cycle. (This notion will

serve to define irreducible linear systems, p. 341, and irreducible polynomial systems,
p. 482, which enjoy strong asymptotic properties.)

Definition I.8. A class of combinatorial structures is said to be constructible or speci-
fiable iff it admits a (possibly recursive) specification in terms of sum, product, se-
quence, set, multiset, and cycle constructions.

At this stage, we have therefore available a specification language for combina-
torial structures which is some fragment of set theory with recursion added. Each

constructible class has by virtue of Theorem I.1 an ordinary generating function for

which functional equations can be produced systematically. (In fact, it is even possible

to use computer algebra systems in order to compute it automatically! See the article

by Flajolet, Salvy, and Zimmermann [255] for the description of such a system.)

Theorem I.2 (Symbolic method, unlabelled universe). The generating function of a
constructible class is a component of a system of functional equations whose terms
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combinatorial class (there are finitely many elements of size n, for each n), then the correspond-
ing OGFs satisfy A[∞](z) = lim j→∞ A[ j](z) in the formal topology (Appendix A.5: Formal
power series, p. 730). !

Definition I.7. A specification for an r–tuple #A = (A(1), . . . ,A(r)) of classes is a
collection of r equations,

(29)





A(1) = !1(A(1), . . . ,A(r))
A(2) = !2(A(1), . . . ,A(r))

· · ·
A(r) = !r (A(1), . . . ,A(r))

where each !i denotes a term built from the A using the constructions of disjoint

union, cartesian product, sequence, powerset, multiset, and cycle, as well as the initial

classes E (neutral) and Z (atomic).

We also say that the system is a specification of A(1). A specification for a com-
binatorial class is thus a sort of formal grammar defining that class. Formally, the sys-
tem (29) is an iterative or non-recursive specification if it is strictly upper-triangular,
that is, A(r) is defined solely in terms of initial classes Z, E ; the definition of A(r−1)
only involvesA(r), and so on; in that case, by back substitutions, it is apparent that for

an iterative specification, A(1) can be equivalently described by a single term involv-

ing only the initial classes and the basic constructors. Otherwise, the system is said to

be recursive. In the latter case, the semantics of recursion is identical to the one intro-

duced in the case of trees: start with the “empty” vector of classes, #A[0] := (∅, . . . ,∅),
iterate #A[ j+1] = #![ #A[ j]

]
, and finally take the limit.

There is an alternative and convenient way to visualize these notions. Given a

specification of the form (29), we can associate its dependency (di)graph " to it as
follows. The set of vertices of " is the set of indices {1, . . . , r}; for each equation
A(i) = #i (A(1), . . . ,A(r)) and for each j such that A( j) appears explicitly on the

right-hand side of the equation, place a directed edge (i → j) in ". It is then eas-
ily recognized that a class is iterative if the dependency graph of its specification is
acyclic; it is recursive is the dependency graph has a directed cycle. (This notion will

serve to define irreducible linear systems, p. 341, and irreducible polynomial systems,
p. 482, which enjoy strong asymptotic properties.)

Definition I.8. A class of combinatorial structures is said to be constructible or speci-
fiable iff it admits a (possibly recursive) specification in terms of sum, product, se-
quence, set, multiset, and cycle constructions.

At this stage, we have therefore available a specification language for combina-
torial structures which is some fragment of set theory with recursion added. Each

constructible class has by virtue of Theorem I.1 an ordinary generating function for

which functional equations can be produced systematically. (In fact, it is even possible

to use computer algebra systems in order to compute it automatically! See the article

by Flajolet, Salvy, and Zimmermann [255] for the description of such a system.)

Theorem I.2 (Symbolic method, unlabelled universe). The generating function of a
constructible class is a component of a system of functional equations whose terms
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combinatorial class (there are finitely many elements of size n, for each n), then the correspond-
ing OGFs satisfy A[∞](z) = lim j→∞ A[ j](z) in the formal topology (Appendix A.5: Formal
power series, p. 730). !

Definition I.7. A specification for an r–tuple #A = (A(1), . . . ,A(r)) of classes is a
collection of r equations,

(29)





A(1) = !1(A(1), . . . ,A(r))
A(2) = !2(A(1), . . . ,A(r))

· · ·
A(r) = !r (A(1), . . . ,A(r))

where each !i denotes a term built from the A using the constructions of disjoint

union, cartesian product, sequence, powerset, multiset, and cycle, as well as the initial

classes E (neutral) and Z (atomic).

We also say that the system is a specification of A(1). A specification for a com-
binatorial class is thus a sort of formal grammar defining that class. Formally, the sys-
tem (29) is an iterative or non-recursive specification if it is strictly upper-triangular,
that is, A(r) is defined solely in terms of initial classes Z, E ; the definition of A(r−1)
only involvesA(r), and so on; in that case, by back substitutions, it is apparent that for

an iterative specification, A(1) can be equivalently described by a single term involv-

ing only the initial classes and the basic constructors. Otherwise, the system is said to

be recursive. In the latter case, the semantics of recursion is identical to the one intro-

duced in the case of trees: start with the “empty” vector of classes, #A[0] := (∅, . . . ,∅),
iterate #A[ j+1] = #![ #A[ j]

]
, and finally take the limit.

There is an alternative and convenient way to visualize these notions. Given a

specification of the form (29), we can associate its dependency (di)graph " to it as
follows. The set of vertices of " is the set of indices {1, . . . , r}; for each equation
A(i) = #i (A(1), . . . ,A(r)) and for each j such that A( j) appears explicitly on the

right-hand side of the equation, place a directed edge (i → j) in ". It is then eas-
ily recognized that a class is iterative if the dependency graph of its specification is
acyclic; it is recursive is the dependency graph has a directed cycle. (This notion will

serve to define irreducible linear systems, p. 341, and irreducible polynomial systems,
p. 482, which enjoy strong asymptotic properties.)

Definition I.8. A class of combinatorial structures is said to be constructible or speci-
fiable iff it admits a (possibly recursive) specification in terms of sum, product, se-
quence, set, multiset, and cycle constructions.

At this stage, we have therefore available a specification language for combina-
torial structures which is some fragment of set theory with recursion added. Each

constructible class has by virtue of Theorem I.1 an ordinary generating function for

which functional equations can be produced systematically. (In fact, it is even possible

to use computer algebra systems in order to compute it automatically! See the article

by Flajolet, Salvy, and Zimmermann [255] for the description of such a system.)

Theorem I.2 (Symbolic method, unlabelled universe). The generating function of a
constructible class is a component of a system of functional equations whose terms
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combinatorial class (there are finitely many elements of size n, for each n), then the correspond-
ing OGFs satisfy A[∞](z) = lim j→∞ A[ j](z) in the formal topology (Appendix A.5: Formal
power series, p. 730). !

Definition I.7. A specification for an r–tuple #A = (A(1), . . . ,A(r)) of classes is a
collection of r equations,

(29)





A(1) = !1(A(1), . . . ,A(r))
A(2) = !2(A(1), . . . ,A(r))

· · ·
A(r) = !r (A(1), . . . ,A(r))

where each !i denotes a term built from the A using the constructions of disjoint

union, cartesian product, sequence, powerset, multiset, and cycle, as well as the initial

classes E (neutral) and Z (atomic).

We also say that the system is a specification of A(1). A specification for a com-
binatorial class is thus a sort of formal grammar defining that class. Formally, the sys-
tem (29) is an iterative or non-recursive specification if it is strictly upper-triangular,
that is, A(r) is defined solely in terms of initial classes Z, E ; the definition of A(r−1)
only involvesA(r), and so on; in that case, by back substitutions, it is apparent that for

an iterative specification, A(1) can be equivalently described by a single term involv-

ing only the initial classes and the basic constructors. Otherwise, the system is said to

be recursive. In the latter case, the semantics of recursion is identical to the one intro-

duced in the case of trees: start with the “empty” vector of classes, #A[0] := (∅, . . . ,∅),
iterate #A[ j+1] = #![ #A[ j]

]
, and finally take the limit.

There is an alternative and convenient way to visualize these notions. Given a

specification of the form (29), we can associate its dependency (di)graph " to it as
follows. The set of vertices of " is the set of indices {1, . . . , r}; for each equation
A(i) = #i (A(1), . . . ,A(r)) and for each j such that A( j) appears explicitly on the

right-hand side of the equation, place a directed edge (i → j) in ". It is then eas-
ily recognized that a class is iterative if the dependency graph of its specification is
acyclic; it is recursive is the dependency graph has a directed cycle. (This notion will

serve to define irreducible linear systems, p. 341, and irreducible polynomial systems,
p. 482, which enjoy strong asymptotic properties.)

Definition I.8. A class of combinatorial structures is said to be constructible or speci-
fiable iff it admits a (possibly recursive) specification in terms of sum, product, se-
quence, set, multiset, and cycle constructions.

At this stage, we have therefore available a specification language for combina-
torial structures which is some fragment of set theory with recursion added. Each

constructible class has by virtue of Theorem I.1 an ordinary generating function for

which functional equations can be produced systematically. (In fact, it is even possible

to use computer algebra systems in order to compute it automatically! See the article

by Flajolet, Salvy, and Zimmermann [255] for the description of such a system.)

Theorem I.2 (Symbolic method, unlabelled universe). The generating function of a
constructible class is a component of a system of functional equations whose terms
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Y = Z Y 7 because Y = 0.
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Look for 0 in Hm(Z, 0).
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combinatorial class (there are finitely many elements of size n, for each n), then the correspond-
ing OGFs satisfy A[∞](z) = lim j→∞ A[ j](z) in the formal topology (Appendix A.5: Formal
power series, p. 730). !

Definition I.7. A specification for an r–tuple #A = (A(1), . . . ,A(r)) of classes is a
collection of r equations,

(29)





A(1) = !1(A(1), . . . ,A(r))
A(2) = !2(A(1), . . . ,A(r))

· · ·
A(r) = !r (A(1), . . . ,A(r))

where each !i denotes a term built from the A using the constructions of disjoint

union, cartesian product, sequence, powerset, multiset, and cycle, as well as the initial

classes E (neutral) and Z (atomic).

We also say that the system is a specification of A(1). A specification for a com-
binatorial class is thus a sort of formal grammar defining that class. Formally, the sys-
tem (29) is an iterative or non-recursive specification if it is strictly upper-triangular,
that is, A(r) is defined solely in terms of initial classes Z, E ; the definition of A(r−1)
only involvesA(r), and so on; in that case, by back substitutions, it is apparent that for

an iterative specification, A(1) can be equivalently described by a single term involv-

ing only the initial classes and the basic constructors. Otherwise, the system is said to

be recursive. In the latter case, the semantics of recursion is identical to the one intro-

duced in the case of trees: start with the “empty” vector of classes, #A[0] := (∅, . . . ,∅),
iterate #A[ j+1] = #![ #A[ j]

]
, and finally take the limit.

There is an alternative and convenient way to visualize these notions. Given a

specification of the form (29), we can associate its dependency (di)graph " to it as
follows. The set of vertices of " is the set of indices {1, . . . , r}; for each equation
A(i) = #i (A(1), . . . ,A(r)) and for each j such that A( j) appears explicitly on the

right-hand side of the equation, place a directed edge (i → j) in ". It is then eas-
ily recognized that a class is iterative if the dependency graph of its specification is
acyclic; it is recursive is the dependency graph has a directed cycle. (This notion will

serve to define irreducible linear systems, p. 341, and irreducible polynomial systems,
p. 482, which enjoy strong asymptotic properties.)

Definition I.8. A class of combinatorial structures is said to be constructible or speci-
fiable iff it admits a (possibly recursive) specification in terms of sum, product, se-
quence, set, multiset, and cycle constructions.

At this stage, we have therefore available a specification language for combina-
torial structures which is some fragment of set theory with recursion added. Each

constructible class has by virtue of Theorem I.1 an ordinary generating function for

which functional equations can be produced systematically. (In fact, it is even possible

to use computer algebra systems in order to compute it automatically! See the article

by Flajolet, Salvy, and Zimmermann [255] for the description of such a system.)

Theorem I.2 (Symbolic method, unlabelled universe). The generating function of a
constructible class is a component of a system of functional equations whose terms
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Definition

F(Z1, Z2) is polynomial in the sorts Z1 when, for all n � 0, the
species F=(.,n) =

P
k�0 F=(k,n) is polynomial.

(The species is polynomial when the size is fixed in the other sorts.)

Examples:

Seq(Z1 + Z2): not polynomial in Z1 or Z2

Seq(Z1 · Z2): polynomial in Z1 and Z2 (but not in Z)

Z1Seq(Z2): polynomial in Z1 and not in Z2.

Well-founded Systems?
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Y1 = Z + Y1Y2

Y2 = 1
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Y1 = Z + Y2Y2

1
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combinatorial class (there are finitely many elements of size n, for each n), then the correspond-
ing OGFs satisfy A[∞](z) = lim j→∞ A[ j](z) in the formal topology (Appendix A.5: Formal
power series, p. 730). !

Definition I.7. A specification for an r–tuple #A = (A(1), . . . ,A(r)) of classes is a
collection of r equations,

(29)





A(1) = !1(A(1), . . . ,A(r))
A(2) = !2(A(1), . . . ,A(r))

· · ·
A(r) = !r (A(1), . . . ,A(r))

where each !i denotes a term built from the A using the constructions of disjoint

union, cartesian product, sequence, powerset, multiset, and cycle, as well as the initial

classes E (neutral) and Z (atomic).

We also say that the system is a specification of A(1). A specification for a com-
binatorial class is thus a sort of formal grammar defining that class. Formally, the sys-
tem (29) is an iterative or non-recursive specification if it is strictly upper-triangular,
that is, A(r) is defined solely in terms of initial classes Z, E ; the definition of A(r−1)
only involvesA(r), and so on; in that case, by back substitutions, it is apparent that for

an iterative specification, A(1) can be equivalently described by a single term involv-

ing only the initial classes and the basic constructors. Otherwise, the system is said to

be recursive. In the latter case, the semantics of recursion is identical to the one intro-

duced in the case of trees: start with the “empty” vector of classes, #A[0] := (∅, . . . ,∅),
iterate #A[ j+1] = #![ #A[ j]

]
, and finally take the limit.

There is an alternative and convenient way to visualize these notions. Given a

specification of the form (29), we can associate its dependency (di)graph " to it as
follows. The set of vertices of " is the set of indices {1, . . . , r}; for each equation
A(i) = #i (A(1), . . . ,A(r)) and for each j such that A( j) appears explicitly on the

right-hand side of the equation, place a directed edge (i → j) in ". It is then eas-
ily recognized that a class is iterative if the dependency graph of its specification is
acyclic; it is recursive is the dependency graph has a directed cycle. (This notion will

serve to define irreducible linear systems, p. 341, and irreducible polynomial systems,
p. 482, which enjoy strong asymptotic properties.)

Definition I.8. A class of combinatorial structures is said to be constructible or speci-
fiable iff it admits a (possibly recursive) specification in terms of sum, product, se-
quence, set, multiset, and cycle constructions.

At this stage, we have therefore available a specification language for combina-
torial structures which is some fragment of set theory with recursion added. Each

constructible class has by virtue of Theorem I.1 an ordinary generating function for

which functional equations can be produced systematically. (In fact, it is even possible

to use computer algebra systems in order to compute it automatically! See the article

by Flajolet, Salvy, and Zimmermann [255] for the description of such a system.)

Theorem I.2 (Symbolic method, unlabelled universe). The generating function of a
constructible class is a component of a system of functional equations whose terms
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Examples H(0, 0) 6= 0

Definition

F(Z1, Z2) is polynomial in the sorts Z1 when, for all n � 0, the
species F=(.,n) =

P
k�0 F=(k,n) is polynomial.

(The species is polynomial when the size is fixed in the other sorts.)

Examples:

Seq(Z1 + Z2): not polynomial in Z1 or Z2

Seq(Z1 · Z2): polynomial in Z1 and Z2 (but not in Z)

Z1Seq(Z2): polynomial in Z1 and not in Z2.

Well-founded Systems?
(

Y1 = Z + Y1Y2

Y2 = 1

(
Y1 = Z + Y2Y2

1

Y2 = 1
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combinatorial class (there are finitely many elements of size n, for each n), then the correspond-
ing OGFs satisfy A[∞](z) = lim j→∞ A[ j](z) in the formal topology (Appendix A.5: Formal
power series, p. 730). !

Definition I.7. A specification for an r–tuple #A = (A(1), . . . ,A(r)) of classes is a
collection of r equations,

(29)





A(1) = !1(A(1), . . . ,A(r))
A(2) = !2(A(1), . . . ,A(r))

· · ·
A(r) = !r (A(1), . . . ,A(r))

where each !i denotes a term built from the A using the constructions of disjoint

union, cartesian product, sequence, powerset, multiset, and cycle, as well as the initial

classes E (neutral) and Z (atomic).

We also say that the system is a specification of A(1). A specification for a com-
binatorial class is thus a sort of formal grammar defining that class. Formally, the sys-
tem (29) is an iterative or non-recursive specification if it is strictly upper-triangular,
that is, A(r) is defined solely in terms of initial classes Z, E ; the definition of A(r−1)
only involvesA(r), and so on; in that case, by back substitutions, it is apparent that for

an iterative specification, A(1) can be equivalently described by a single term involv-

ing only the initial classes and the basic constructors. Otherwise, the system is said to

be recursive. In the latter case, the semantics of recursion is identical to the one intro-

duced in the case of trees: start with the “empty” vector of classes, #A[0] := (∅, . . . ,∅),
iterate #A[ j+1] = #![ #A[ j]

]
, and finally take the limit.

There is an alternative and convenient way to visualize these notions. Given a

specification of the form (29), we can associate its dependency (di)graph " to it as
follows. The set of vertices of " is the set of indices {1, . . . , r}; for each equation
A(i) = #i (A(1), . . . ,A(r)) and for each j such that A( j) appears explicitly on the

right-hand side of the equation, place a directed edge (i → j) in ". It is then eas-
ily recognized that a class is iterative if the dependency graph of its specification is
acyclic; it is recursive is the dependency graph has a directed cycle. (This notion will

serve to define irreducible linear systems, p. 341, and irreducible polynomial systems,
p. 482, which enjoy strong asymptotic properties.)

Definition I.8. A class of combinatorial structures is said to be constructible or speci-
fiable iff it admits a (possibly recursive) specification in terms of sum, product, se-
quence, set, multiset, and cycle constructions.

At this stage, we have therefore available a specification language for combina-
torial structures which is some fragment of set theory with recursion added. Each

constructible class has by virtue of Theorem I.1 an ordinary generating function for

which functional equations can be produced systematically. (In fact, it is even possible

to use computer algebra systems in order to compute it automatically! See the article

by Flajolet, Salvy, and Zimmermann [255] for the description of such a system.)

Theorem I.2 (Symbolic method, unlabelled universe). The generating function of a
constructible class is a component of a system of functional equations whose terms
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Y = Z Y 3 Y = Z + Z Y 3 Y = Z + Y 7
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With our conditions:

Y = Z Y 7 because Y = 0.

How to detect 0 coordinates:
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Examples H(0, 0) 6= 0

Definition

F(Z1, Z2) is polynomial in the sorts Z1 when, for all n � 0, the
species F=(.,n) =

P
k�0 F=(k,n) is polynomial.

(The species is polynomial when the size is fixed in the other sorts.)

Examples:

Seq(Z1 + Z2): not polynomial in Z1 or Z2

Seq(Z1 · Z2): polynomial in Z1 and Z2 (but not in Z)

Z1Seq(Z2): polynomial in Z1 and not in Z2.
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combinatorial class (there are finitely many elements of size n, for each n), then the correspond-
ing OGFs satisfy A[∞](z) = lim j→∞ A[ j](z) in the formal topology (Appendix A.5: Formal
power series, p. 730). !
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· · ·
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where each !i denotes a term built from the A using the constructions of disjoint

union, cartesian product, sequence, powerset, multiset, and cycle, as well as the initial

classes E (neutral) and Z (atomic).

We also say that the system is a specification of A(1). A specification for a com-
binatorial class is thus a sort of formal grammar defining that class. Formally, the sys-
tem (29) is an iterative or non-recursive specification if it is strictly upper-triangular,
that is, A(r) is defined solely in terms of initial classes Z, E ; the definition of A(r−1)
only involvesA(r), and so on; in that case, by back substitutions, it is apparent that for

an iterative specification, A(1) can be equivalently described by a single term involv-

ing only the initial classes and the basic constructors. Otherwise, the system is said to

be recursive. In the latter case, the semantics of recursion is identical to the one intro-

duced in the case of trees: start with the “empty” vector of classes, #A[0] := (∅, . . . ,∅),
iterate #A[ j+1] = #![ #A[ j]

]
, and finally take the limit.

There is an alternative and convenient way to visualize these notions. Given a

specification of the form (29), we can associate its dependency (di)graph " to it as
follows. The set of vertices of " is the set of indices {1, . . . , r}; for each equation
A(i) = #i (A(1), . . . ,A(r)) and for each j such that A( j) appears explicitly on the

right-hand side of the equation, place a directed edge (i → j) in ". It is then eas-
ily recognized that a class is iterative if the dependency graph of its specification is
acyclic; it is recursive is the dependency graph has a directed cycle. (This notion will

serve to define irreducible linear systems, p. 341, and irreducible polynomial systems,
p. 482, which enjoy strong asymptotic properties.)

Definition I.8. A class of combinatorial structures is said to be constructible or speci-
fiable iff it admits a (possibly recursive) specification in terms of sum, product, se-
quence, set, multiset, and cycle constructions.

At this stage, we have therefore available a specification language for combina-
torial structures which is some fragment of set theory with recursion added. Each

constructible class has by virtue of Theorem I.1 an ordinary generating function for

which functional equations can be produced systematically. (In fact, it is even possible

to use computer algebra systems in order to compute it automatically! See the article

by Flajolet, Salvy, and Zimmermann [255] for the description of such a system.)

Theorem I.2 (Symbolic method, unlabelled universe). The generating function of a
constructible class is a component of a system of functional equations whose terms
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Examples H(0, 0) 6= 0

Definition

F(Z1, Z2) is polynomial in the sorts Z1 when, for all n � 0, the
species F=(.,n) =

P
k�0 F=(k,n) is polynomial.

(The species is polynomial when the size is fixed in the other sorts.)

Examples:

Seq(Z1 + Z2): not polynomial in Z1 or Z2

Seq(Z1 · Z2): polynomial in Z1 and Z2 (but not in Z)

Z1Seq(Z2): polynomial in Z1 and not in Z2.

Well-founded Systems?
(

Y1 = Z + Y1Y2

Y2 = 1

(
Y1 = Z + Y2Y2

1

Y2 = 1
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combinatorial class (there are finitely many elements of size n, for each n), then the correspond-
ing OGFs satisfy A[∞](z) = lim j→∞ A[ j](z) in the formal topology (Appendix A.5: Formal
power series, p. 730). !

Definition I.7. A specification for an r–tuple #A = (A(1), . . . ,A(r)) of classes is a
collection of r equations,

(29)





A(1) = !1(A(1), . . . ,A(r))
A(2) = !2(A(1), . . . ,A(r))

· · ·
A(r) = !r (A(1), . . . ,A(r))

where each !i denotes a term built from the A using the constructions of disjoint

union, cartesian product, sequence, powerset, multiset, and cycle, as well as the initial

classes E (neutral) and Z (atomic).

We also say that the system is a specification of A(1). A specification for a com-
binatorial class is thus a sort of formal grammar defining that class. Formally, the sys-
tem (29) is an iterative or non-recursive specification if it is strictly upper-triangular,
that is, A(r) is defined solely in terms of initial classes Z, E ; the definition of A(r−1)
only involvesA(r), and so on; in that case, by back substitutions, it is apparent that for

an iterative specification, A(1) can be equivalently described by a single term involv-

ing only the initial classes and the basic constructors. Otherwise, the system is said to

be recursive. In the latter case, the semantics of recursion is identical to the one intro-

duced in the case of trees: start with the “empty” vector of classes, #A[0] := (∅, . . . ,∅),
iterate #A[ j+1] = #![ #A[ j]

]
, and finally take the limit.

There is an alternative and convenient way to visualize these notions. Given a

specification of the form (29), we can associate its dependency (di)graph " to it as
follows. The set of vertices of " is the set of indices {1, . . . , r}; for each equation
A(i) = #i (A(1), . . . ,A(r)) and for each j such that A( j) appears explicitly on the

right-hand side of the equation, place a directed edge (i → j) in ". It is then eas-
ily recognized that a class is iterative if the dependency graph of its specification is
acyclic; it is recursive is the dependency graph has a directed cycle. (This notion will

serve to define irreducible linear systems, p. 341, and irreducible polynomial systems,
p. 482, which enjoy strong asymptotic properties.)

Definition I.8. A class of combinatorial structures is said to be constructible or speci-
fiable iff it admits a (possibly recursive) specification in terms of sum, product, se-
quence, set, multiset, and cycle constructions.

At this stage, we have therefore available a specification language for combina-
torial structures which is some fragment of set theory with recursion added. Each

constructible class has by virtue of Theorem I.1 an ordinary generating function for

which functional equations can be produced systematically. (In fact, it is even possible

to use computer algebra systems in order to compute it automatically! See the article

by Flajolet, Salvy, and Zimmermann [255] for the description of such a system.)

Theorem I.2 (Symbolic method, unlabelled universe). The generating function of a
constructible class is a component of a system of functional equations whose terms

?
?

?

?

?
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And starting from the specification?

Y = Z + Y(Z2)
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✓
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Symbolic Method: combinatorial specifications

Intro Species of structures Well-founded combinatorial systems Newton iteration

Examples H(0, 0) = 0

Joyal’s conditions:

Y = Seq(Z) 3 Y = Seq(Z Seq(Z)) 3 Y = Seq(Seq(Z)) 7
H0(0) = 0 H0(0) = 0 H0(0) not defined!

Y = Z Y 3 Y = Z + Z Y 3 Y = Z + Y 7
H0(0, 0) = 0 H0(0, 0) = 0 H0(0, 0) = 1

With our conditions:

Y = Z Y 7 because Y = 0.

How to detect 0 coordinates:

Look for 0 in Hm(Z, 0).

Examples:

8
><
>:

A = B
B = C
C = Z

8
><
>:

A = B
B = Z + C
C = ZC
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Examples H(0, 0) 6= 0

Definition

F(Z1, Z2) is polynomial in the sorts Z1 when, for all n � 0, the
species F=(.,n) =

P
k�0 F=(k,n) is polynomial.

(The species is polynomial when the size is fixed in the other sorts.)

Examples:

Seq(Z1 + Z2): not polynomial in Z1 or Z2

Seq(Z1 · Z2): polynomial in Z1 and Z2 (but not in Z)

Z1Seq(Z2): polynomial in Z1 and not in Z2.

Well-founded Systems?
(

Y1 = Z + Y1Y2

Y2 = 1

(
Y1 = Z + Y2Y2

1

Y2 = 1
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combinatorial class (there are finitely many elements of size n, for each n), then the correspond-
ing OGFs satisfy A[∞](z) = lim j→∞ A[ j](z) in the formal topology (Appendix A.5: Formal
power series, p. 730). !

Definition I.7. A specification for an r–tuple #A = (A(1), . . . ,A(r)) of classes is a
collection of r equations,

(29)





A(1) = !1(A(1), . . . ,A(r))
A(2) = !2(A(1), . . . ,A(r))

· · ·
A(r) = !r (A(1), . . . ,A(r))

where each !i denotes a term built from the A using the constructions of disjoint

union, cartesian product, sequence, powerset, multiset, and cycle, as well as the initial

classes E (neutral) and Z (atomic).

We also say that the system is a specification of A(1). A specification for a com-
binatorial class is thus a sort of formal grammar defining that class. Formally, the sys-
tem (29) is an iterative or non-recursive specification if it is strictly upper-triangular,
that is, A(r) is defined solely in terms of initial classes Z, E ; the definition of A(r−1)
only involvesA(r), and so on; in that case, by back substitutions, it is apparent that for

an iterative specification, A(1) can be equivalently described by a single term involv-

ing only the initial classes and the basic constructors. Otherwise, the system is said to

be recursive. In the latter case, the semantics of recursion is identical to the one intro-

duced in the case of trees: start with the “empty” vector of classes, #A[0] := (∅, . . . ,∅),
iterate #A[ j+1] = #![ #A[ j]

]
, and finally take the limit.

There is an alternative and convenient way to visualize these notions. Given a

specification of the form (29), we can associate its dependency (di)graph " to it as
follows. The set of vertices of " is the set of indices {1, . . . , r}; for each equation
A(i) = #i (A(1), . . . ,A(r)) and for each j such that A( j) appears explicitly on the

right-hand side of the equation, place a directed edge (i → j) in ". It is then eas-
ily recognized that a class is iterative if the dependency graph of its specification is
acyclic; it is recursive is the dependency graph has a directed cycle. (This notion will

serve to define irreducible linear systems, p. 341, and irreducible polynomial systems,
p. 482, which enjoy strong asymptotic properties.)

Definition I.8. A class of combinatorial structures is said to be constructible or speci-
fiable iff it admits a (possibly recursive) specification in terms of sum, product, se-
quence, set, multiset, and cycle constructions.

At this stage, we have therefore available a specification language for combina-
torial structures which is some fragment of set theory with recursion added. Each

constructible class has by virtue of Theorem I.1 an ordinary generating function for

which functional equations can be produced systematically. (In fact, it is even possible

to use computer algebra systems in order to compute it automatically! See the article

by Flajolet, Salvy, and Zimmermann [255] for the description of such a system.)

Theorem I.2 (Symbolic method, unlabelled universe). The generating function of a
constructible class is a component of a system of functional equations whose terms

?
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And starting from the specification?

Y = Z + Y(Z2)

Between Analytic Combinatorics and Species Theory 9/28

?

Intro Species of structures Well-founded combinatorial systems Newton iteration

Examples H(0, 0) = 0

(
Y1 = Z Y2

Y2 = Z Y1 Seq(Y2)
3

✓
0 0

Z Seq(Y2) Z Y1 Seq(Y2)2

◆����
0,0

=

✓
0 0
0 0

◆

(
Y1 = Z + Y2

Y2 = Z Y1 Seq(Y2)
3

✓
0 1
0 0

◆

(
Y1 = Z + Y2

Y2 = Z + Y1 Seq(Y2)
7

✓
0 1

Seq(Y2) Y1 Seq(Y2)2

◆����
0,0

=

✓
0 1
1 0

◆

(
Y1 = Z + Y2

2

Y2 = Y1

3
✓

0 0
1 0

◆

Between Analytic Combinatorics and Species Theory 20/28

?

?

?
?

?

Well 
founded ?

Between Analytic Combinatorics and Species Theory 4/26



Intro Species of structures Well-founded combinatorial systems Newton iteration

II Elements of Species Theory
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The key point

Theorem (Implicit Species Theorem - Joyal 81)

Let H be a vector of multisort species, such that

H(0, 0) = 0 and

the Jacobian matrix ∂H/∂Y(0, 0) is nilpotent.

The system of equations

Y = H(Z,Y)

admits a vector S of species solution such that S(0) = 0, which is
unique up to isomorphism.

H(0, 0) = 0 ?

What about the other condition?

Is it a well founded system?

Between Analytic Combinatorics and Species Theory 6/26



Intro Species of structures Well-founded combinatorial systems Newton iteration

Definition

Definition (Species F)

A species of structures F is a rule that,

∀ finite set U produces a finite set F [U], and

∀ bij. σ : U → V produces a bij. F [σ] : F [U]→ F [V ],

with F [IdU ] = IdF [U] and F [τ ◦ σ] = F [τ ] ◦ F [σ] for any bijections σ and τ .

F [U]-structure :

labeled!
U = {◦, •, •, •, •}

 Species F :

labeled and unlabelled...
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Exemples

the empty species 0, defined by 0[U] = ∅, ∀U.

the species 1 (the empty set) defined by

1[U] = ∅ if U 6= ∅ and 1[∅] = {∅}.
the species Z of singletons, defined by

Z[U] = {U} if |U| = 1 and Z[U] = ∅ otherwise.

The species Set of sets, defined by Set[U] = {U}.
The species Seq of sequences (or linear orders) defined by
Seq[∅] = {∅} and for U = {u1, . . . , un} 6= ∅,

Seq[U] = {(uσ(1), . . . , uσ(n)) | σ ∈ Pn}.
The species Cyc of of cycles, defined by Cyc[∅] = ∅ and for U 6= ∅,

Cyc[U] = {σ | σ ∈ P[U] is composed of a unique cycle}.

In all cases, the transport F [σ] is (obvious) carried out in the natural fashion...
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Sequences and Permutations

The species Seq of sequences is defined by Seq[∅] = {∅} and for
U = {u1, . . . , un} 6= ∅, Seq[U] = {(uσ(1), . . . , uσ(n)) | σ ∈ Pn}.
The species P of permutations is defined by

P[U] = {ψ : U → U | ∀v ∈ U,∃! u ∈ U, ψ(u) = v}.

Let U = {1, 2, 3}, V = {1, 2, 3} and σ(1) = 2, σ(2) = 3, σ(3) = 1,

Seq[U] = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}

P[U] =





1→ 1
2→ 2
3→ 3

,
1→ 1
2→ 3
3→ 2

,
1→ 2
2→ 1
3→ 3

,
1→ 2
2→ 3
3→ 1

,
1→ 3
2→ 1
3→ 2

,
1→ 3
2→ 2
3→ 1





Seq[σ] = {(1, 2, 3)→ (2, 3, 1), (1, 3, 2)→ (2, 1, 3), . . . }

P[σ] =





1→ 1
2→ 2
3→ 3

→
2→ 2
3→ 3
1→ 1

,
1→ 1
2→ 3
3→ 2

→
2→ 2
3→ 1
1→ 3

, . . .





Between Analytic Combinatorics and Species Theory 9/26



Intro Species of structures Well-founded combinatorial systems Newton iteration

Sequences and Permutations

The species Seq of sequences is defined by Seq[∅] = {∅} and for
U = {u1, . . . , un} 6= ∅, Seq[U] = {(uσ(1), . . . , uσ(n)) | σ ∈ Pn}.
The species P of permutations is defined by

P[U] = {ψ : U → U | ∀v ∈ U,∃! u ∈ U, ψ(u) = v}.

Let U = {1, 2, 3}, V = {1, 2, 3} and σ(1) = 2, σ(2) = 3, σ(3) = 1,

Seq[U] = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}

P[U] =





1→ 1
2→ 2
3→ 3

,
1→ 1
2→ 3
3→ 2

,
1→ 2
2→ 1
3→ 3

,
1→ 2
2→ 3
3→ 1

,
1→ 3
2→ 1
3→ 2

,
1→ 3
2→ 2
3→ 1





Seq[σ] = {(1, 2, 3)→ (2, 3, 1), (1, 3, 2)→ (2, 1, 3), . . . }

P[σ] =





1→ 1
2→ 2
3→ 3

→
2→ 2
3→ 3
1→ 1

,
1→ 1
2→ 3
3→ 2

→
2→ 2
3→ 1
1→ 3

, . . .





Between Analytic Combinatorics and Species Theory 9/26



Intro Species of structures Well-founded combinatorial systems Newton iteration

Operations on Species

The Sum of species:

(F + G)[U] = F [U] + G[U]

The Product of two species F and G:

(F · G)[U] =
∑

(U1,U2),U=U1+U2

F [U1]× G[U2],

The Composition of F with G (also denoted by F(G)):

(F ◦ G)[U] =
∑

π partition of U

F [π]×
∏

p∈π
G[p].

with G[∅] = ∅
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Example: the species F = Set(Cyc(Z))

For U = {1, 2, 3}, Seq(Cyc)[U] =

IntroSpeciesofstructuresWell-foundedcombinatorialsystemsNewtoniteration

SequencesandPermutations

ThespeciesSeqofsequencesisdefinedbySeq[0]={0}andfor
U={u1,...,un}6=0,Seq[U]={(u�(1),...,u�(n))|�2Pn}.

ThespeciesPofpermutationsisdefinedby

P[U]={ :U!U|8v2U,9!u2U, (u)=v}.

LetU={1,2,3},V={1,2,3}and�(1)=2,�(2)=3,�(3)=1,

Seq[U]={(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)}

P[U]=

8
<
:

1!1
2!2
3!3

,
1!1
2!3
3!2

,
1!2
2!1
3!3

,
1!2
2!3
3!1

,
1!3
2!1
3!2

,
1!3
2!2
3!1

9
=
;

Seq[�]={(1,2,3)!(2,3,1),(1,3,2)!(2,1,3),...}

P[U]=

8
<
:

1!1
2!2
3!3

!
2!2
3!3
1!1

,
1!1
2!3
3!2

!
2!2
3!1
1!3

,...

9
=
;

BetweenAnalyticCombinatoricsandSpeciesTheory10/29

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

Intro Species of structures Well-founded combinatorial systems Newton iteration

Sequences and Permutations

The species Seq of sequences is defined by Seq[0] = {0} and for
U = {u1, . . . , un} 6= 0, Seq[U] = {(u�(1), . . . , u�(n)) | � 2 Pn}.

The species P of permutations is defined by

P[U] = { : U ! U | 8v 2 U, 9! u 2 U,  (u) = v}.

Let U = {1, 2, 3}, V = {1, 2, 3} and �(1) = 2, �(2) = 3, �(3) = 1,

Seq[U] = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}

P[U] =

8
<
:

1 ! 1
2 ! 2
3 ! 3

,
1 ! 1
2 ! 3
3 ! 2

,
1 ! 2
2 ! 1
3 ! 3

,
1 ! 2
2 ! 3
3 ! 1

,
1 ! 3
2 ! 1
3 ! 2

,
1 ! 3
2 ! 2
3 ! 1

9
=
;

Seq[�] = {(1, 2, 3) ! (2, 3, 1), (1, 3, 2) ! (2, 1, 3), . . . }

P[U] =

8
<
:

1 ! 1
2 ! 2
3 ! 3

!
2 ! 2
3 ! 3
1 ! 1

,
1 ! 1
2 ! 3
3 ! 2

!
2 ! 2
3 ! 1
1 ! 3

, . . .

9
=
;

Between Analytic Combinatorics and Species Theory 10/29

, , , , ,

What about the species of Permutations?

Two species are equal if they produce the same sets and bijections.

.An isomorphism from F to G is a family of
bijections αU : F [U]→ G[U] such that:

!! isomorphic structures are a different notion !!

1.2. ASSOCIATED SERIES 21

as has been already observed for the species S and L. The “good” notion of equality between species
of structures lies half-way between identity and equipotence. It is the concept of isomorphism of
species. It requires that the family of bijections ↵U : F [U ] �! G[U ] satisfy an additional condition
relative to the transport of structures, called the naturality condition.

Definition 1.17. Let F and G be two species of structures. An isomorphism of F to G is a
family of bijections ↵U : F [U ] �! G[U ] which satisfies the following naturality condition: for any
bijection � : U �! V between two finite sets, the following diagram commutes:

F [U ]
↵U�������!G[U ]

F [�]

????y

????yG[�]

F [V ]
↵V�������!G[V ]

In other words, for any F -structure s 2 F [U ], one must have �·↵U (s) = ↵V (�·s). The two species
F and G are then said to be isomorphic, and one writes F ' G.

Informally, the naturality condition means that, for any F -structure s on U , the corresponding
G-structure ↵U (s) on U can be described without appealing to the nature of the elements of U .
Although much weaker than the concept of identity, the concept of isomorphism is nevertheless
compatible with the transition to series (see Exercise 1.19) in the sense that

F ' G )

8
><
>:

F (x) = G(x),
eF (x) = eG(x),

ZF (x1, x2, x3, . . .) = ZG(x1, x2, x3, . . .).

We will have many occasions to verify that two isomorphic species essentially possess the “same”
combinatorial properties. Henceforth they will be considered as equal in the combinatorial algebra
developed in the next sections. Thus we write F = G in place of F ' G, and say that there is a
combinatorial equality between the species F and G.

Example 1.18. There exist many classic bijections showing that the species L and S are equipo-
tent. These bijections 'U : L[U ] ! S[U ] are all based on a linear order U given a priori
on the underlying set U . The most common, when U = [n], consists of identifying the list
(�(1), �(2), . . . , �(n)) with the bijection i 7! �(i).

Example 1.19. Another classical bijection, called the fundamental transformation (see Foata
[45] or Knuth [172]), is particularly elegant. Here is the description. Given a list

� = (u1, u2, . . . , ui, . . . , un),

in L[U ], let i1, i2, . . . , ik be the increasing sequence of indices for which the uij are the minimum
from left to right (records) according to the order U . That is to say uij = min{ui|i  ij}, with j

= denotes a combinatorial equality between isomorphic species.
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Combinatorial Systems

Y = H(Z,Y) :




Y1 = H1(Z,Y1,Y2, . . . ,Ym)

Y2 = H2(Z,Y1,Y2, . . . ,Ym)
...

Ym = Hm(Z,Y1,Y2, . . . ,Ym)

Solution :
H-rooted trees.

multisort species: ∀ finite sets U1, . . . ,Uk , produces a set F [U1, . . . ,Uk ]
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Digression: generating series

Definition

Exponential generating series of F : F (z) =
∑∞

n=0 fn
zn

n!

Ordinary generating series of F : F̃ (z) =
∑∞

n=0 f̃nz
n.

Definition

Cycle index series of F :

ZF (z1, z2, z3, . . . ) =
∑

n≥0

1

n!

(∑

σ∈Pn

fixF [σ]zσ11 zσ22 · · ·
)
, (1)

where σi is the number of cycles of length i in the cycle
decomposition of the permutation σ and fixF [σ] is the number of
F-structures on {1, . . . , n} fixed by F [σ].

F (z) = ZF (z , 0, 0, . . . ) and F̃ (z) = ZF (z , z2, z3, . . . ).
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Derivative

Definition (Derivative)

The derivative F ′ of a species F is defined by F ′[U] = F [U + {?}],
where ? is an element chosen outside of U.

H′: (F ◦ G)′ = F(G)′ · G′:

species derivative species derivative

A+ B A′ + B′ Seq(B) Seq(B) · B′ · Seq(B)

A · B A′ · B +A · B′ Cyc(B) Seq(B) · B′
Set(B) Set(B) · B′
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Jacobian matrix of Y = H(Z,Y) : ∂H/∂Y

Example:

H(G,S,P) := (S + P,Seq(Z + P),Set(Z + S)) .

∂H
∂Y =




0 1 1
0 0 Seq(Z + P) · 1 · Seq(Z + P)
0 Set(Z + S) · 1 0




Not nilpotent at (0, 0): successive powers




0 1 1
0 0 1
0 1 0


 ,




0 1 0
0 1 0
0 0 1


 ,




0 1 1
0 0 1
0 1 0


 .

Rmk: (∂H/∂Y)k
∣∣
(i ,j)

=
∂Hi

∂Y`1
∂H`1
∂Y`2
· · · ∂H`k

∂Yj
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III Well-founded combinatorial
systems
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Back to Joyal’s Implicit Species Theorem

Theorem (IST)

If H(0, 0)= 0 and ∂H/∂Y(0, 0) is nilpotent, then Y = H(Z,Y)
has a unique solution, limit of

Y [0] = 0, Y [n+1] = H(Z,Y [n]) (n ≥ 0).

Def. A =k B if they coincide up to size k (contact k).

Key Lemma

If Y [n+1] =k Y [n], then Y [n+p+1] =k+1 Y [n+p], (p = dimension).
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The nature of combinatorial systems...

Joyal’s Implicit Species Theorem is too restrictive:

We don’t want the condition H(0, 0) = 0.

To allow equations such as Y = 1 + ZY.

We want to characterize precisely which are the systems that
define combinatorial structures B well-founded systems.

Bonus :
A better understanding of the role played by the Jacobian matrix
and a better knowledge of the structure of combinatorial systems.

Between Analytic Combinatorics and Species Theory 18/26



Intro Species of structures Well-founded combinatorial systems Newton iteration

General Implicit Species Theorem

Theorem (General Implicit Species Theorem)

Let H = (H1:m) be any vector of species, such that the system
Y = H(Z,Y) is well-founded. This system admits a solution S
such that S(0) = Hm(0, 0), which is unique up to isomorphism.

Definition (Well-founded combinatorial system)

Y = H(Z,Y) is said to be well-founded when the iteration

Y [0] = 0 and Y [n+1] = H(Z,Y [n]), n ≥ 0 (Φ)

is well-defined,

defines a convergent sequence

and the limit S of this sequence has no zero coordinate.
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Examples H(0, 0) = 0

Joyal’s conditions:

Y = Seq(Z) 3 Y = Seq(Z Seq(Z)) 3 Y = Seq(Seq(Z)) 7
H′(0) = 0 H′(0) = 0 H′(0) not defined!

Y = Z Y 3 Y = Z + Z Y 3 Y = Z + Y 7
H′(0, 0) = 0 H′(0, 0) = 0 H′(0, 0) = 1

With our conditions:

Y = Z Y 7 because Y = 0.

How to detect 0 coordinates:

Look for 0 in Hm(Z, 0).

Examples:





A = B
B = C
C = Z





A = B
B = Z + C
C = ZC
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Y = Seq(Z) 3 Y = Seq(Z Seq(Z)) 3 Y = Seq(Seq(Z)) 7
H′(0) = 0 H′(0) = 0 H′(0) not defined!

Y = Z Y 3 Y = Z + Z Y 3 Y = Z + Y 7
H′(0, 0) = 0 H′(0, 0) = 0 H′(0, 0) = 1

With our conditions:

Y = Z Y 7 because Y = 0.

How to detect 0 coordinates:

Look for 0 in Hm(Z, 0).

Examples:





A = B
B = C
C = Z





A = B
B = Z + C
C = ZC
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Well founded at 0

Algorithm isWellFoundedAt0: Characterization of well-founded systems at 0

Input: H = (H1:m): a vector of species such that H(0,0) = 0.
Output: Answer to “Is the system Y = H(Z, Y) well-founded at 0?”
begin

Compute J := @H/@Y(0,0)
if J m = 0 then return 0-coord(H) else return NO

end

3.2 Well-foundedness at 0

In Joyal’s implicit species theorem, the nilpotence of the Jacobian matrix appears as a su�cient condition.
In this section, we prove a converse of Joyal’s implicit species theorem under the extra condition that the
solution does not have any empty coordinate.

Definition 3.5. Let H(Z, Y) be a vector of species such that H(0,0) = 0. The combinatorial system

Y = H(Z, Y) is said to be well-founded at 0 when the sequence (Y [n])n2N defined by

Y [0] = 0 and Y [n+1] = H(Z, Y [n]), n � 0 (1)

is convergent and the limit S of this sequence has no zero coordinate.

Requiring the solution of a recursively defined combinatorial system to have no zero coordinate is a
natural combinatorial condition from the point of view of specification designers. In any case, Lemma 3.4
shows that it is easy to detect. It is also easy to fix, by removing from the system the corresponding
unknowns.

Example 4. Here are a few examples of systems that are excluded by our definition although the iteration
is convergent:

– Y = Y. In this case, the Jacobian matrix at 0 is not nilpotent (and the equation has an infinite
number of solutions);

– Y = Y + ZY. Again, the Jacobian matrix at 0 is not nilpotent (still 0 is its unique solution);

– Y = ZY. Here, the Jacobian matrix at 0 is nilpotent (it is 0), but this equation is not well-founded
at 0 with our definition.

We now state a nice and e↵ective characterization of systems well-founded at 0 (in our previous
article [? ] the characterization was wrong, omitting the pathological cases of solutions with zero
coordinates). The associated e↵ective procedure is Algorithm isWellFoundedAt0.

Theorem 3.6 (Characterization of well-founded systems at 0). Let H = (H1:m) be a vector of species
such that H(0,0) = 0. The combinatorial system Y = H(Z, Y) is well-founded at 0 if and only if the

Jacobian matrix @H/@Y(0,0) is nilpotent and the vector of species Y [m] defined by Equation (1) has no
zero coordinate.

Proof. One direction was proved along with the implicit species theorem and is a consequence of Propo-
sition 2.5 and Lemma 3.4.

Conversely, if the system is well-founded at 0, then Lemma 3.4 gives the condition on Y [m]. We now
show the nilpotence of the Jacobian matrix by contradiction. Let � be an S-structure such that �i 6= 0
for i = 1, . . . , m and let n be the size of �. Assume that the matrix @H/@Y(0,0) is not nilpotent. Thus,
for all q 2 N, there exists a nonzero structure �q in the species (@H/@Y(0,0))q. By construction, the
size of �q is 0. Since none of the �i is zero, there are infinitely many S-structures of the form �q · �, all

of size n, which prevents the sequence (Y [n])n2N from converging and leads to a contradiction.
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Algorithm 0-coord: Detection of zero coordinates in the solution of a system

Input: H = (H1:m): a vector of species such that H(0,0) = 0 and the
Jacobian matrix @H/@Y(0,0) is nilpotent.

Output: Answer to “Are there 0 coordinates in the solution of the system
Y = H(Z, Y)?”

begin
Compute U := Hm(Z,0)
foreach coordinate C of U do

if C = 0 then return YES
return NO

end

Proof. For simplicity of notation and without loss of generality, we consider the case when F is a single
two-sort species and G is unisort.

We assume that F 6= 0 and show how to build a nonempty F(G1, G2)-structure. The hypotheses
imply that there exists a multi-set V = (V1, V2) such that F [V ] 6= ? and two sets U1 and U2 such
that Gi[Ui] 6= ?, for i = 1, 2. Let U = ({1}⇥U1)+ · · ·+({v1}⇥U1)+({1}⇥U2)+ · · ·+({v2}⇥U2) where
v1 and v2 are the cardinalities of V1 and V2. By construction, there exists a natural bijection between V
and U , so that F [U ] 6= ?. Similarly, each {i} ⇥ U1 is in bijection with U1 so that G1[{i} ⇥ U1] 6= ? and
the same holds for U2. Thus, there exists a nonempty structure in the set

F [U1, U2] ⇥
v1Y

i=1

G1[{i} ⇥ U1] ⇥
v2Y

j=1

G2[{j} ⇥ U2],

which shows that the species F(G1, G2) is not 0, in view of Equation (3).

Example 3. The product species is not zero, thus if A · B = 0, then one of A or B is 0.

As a corollary, the emergence of nonempty species in composition is restricted to the case when a com-
ponent species turns from empty to nonempty.

Corollary 3.3. Let A and B be vectors of (possibly multisort) species; assume that B ⇢ A and
B(0) = A(0) = 0. For any vector of m species F , if F(B) = 0 and F(A) 6= 0, then there exists
i 2 {1, . . . , m}, such that Bi = 0 and Ai 6= 0.

Proof. Assume that the conclusion does not hold, that is, for all i 2 {1, . . . , m}, Bi = 0 implies that
Ai = 0. Assume without loss of generality that the nonzero coordinates of B are the first k ones,
while Bk+1 = · · · = Bm = Ak+1 = · · · = Am = 0. The species G(Y1:k) := F(Y1:k,0) is such that
G(B1:k) = F(B) = 0. By Lemma 3.2, G = 0 and thus 0 = G(A1:k) = F(A), a contradiction.

Finally, we get an e↵ective criterion for detecting the existence of zero coordinates in the solution of
a combinatorial system.

Lemma 3.4. Let H = (H1:m) be a vector of species such that H(0,0) = 0 and the Jacobian ma-
trix @H/@Y(0,0) is nilpotent. The ith coordinate of the solution S of the system Y = H(Z, Y) is 0 if

and only if Y [m]
i = 0, where Y [m]

i is the ith coordinate of the mth element of the sequence defined by (1).

Proof. If Si = 0, then Y [k]
i = 0, for all k � 0. Conversely, let Y [m]

i = 0 and assume that Si 6= 0.

Then, there exists k > m such that Y [k]
i = Hi(Z, Y [k�1]) 6= 0 and Y [k�1]

i = Hi(Z, Y [k�2]) = 0. By

Corollary 3.3, this implies that there exists j 6= i such that Y [k�1]
j 6= 0 and Y [k�2]

j = 0. This reasoning
cannot be iterated more than m times, which implies a contradiction, that is k  m.

Lemma 3.4 leads to Algorithm 0-coord. Note that in practice, it is not necessary to compute the whole
species Hm(Z,0) (which may become very large). Indeed, according to the proof, the only property we
use, for each coordinate of the vector, is whether the species is 0 or not. Thus, practically, we compute
Fm(Z,0) instead of Hm(Z,0), with Fi(Z, Y) being 0 if Hi(Z, Y) = 0 and Z otherwise. This is
essentially the same method as in Algorithm A of [? , p. 28], the zero coordinates being those with an
infinite valuation.
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Examples H(0, 0) = 0

{
Y1 = Z Y2
Y2 = Z Y1 Seq(Y2)

3
(

0 0
Z Seq(Y2) Z Y1 Seq(Y2)

2

)∣∣∣∣
0,0

=

(
0 0
0 0

)

{
Y1 = Z + Y2
Y2 = Z Y1 Seq(Y2)

3
(

0 1
0 0

)

{
Y1 = Z + Y2
Y2 = Z + Y1 Seq(Y2)

7
(

0 1
Seq(Y2) Y1 Seq(Y2)2

)∣∣∣∣
0,0

=

(
0 1
1 0

)

{
Y1 = Z + Y2

2

Y2 = Y1
3

(
0 0
1 0

)
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Algorithmic Characterization

Definition (Companion system of Y = H(Z,Y))

The species 1 is replaced by the sort Z1:

Y = K(Z1,Z,Y), where K = H(Z,Y)−H(0, 0)+Z1H(0, 0).

Theorem (Characterization of well-founded systems)

The system Y = H(Z,Y) is well-founded if and only if

1 the companion system Y = K(Z1,Z,Y) is well-founded at 0
(Joyal’s conditions without zeroes)

2 the solution S1(Z1,Z) of the companion system is
polynomial in Z1.

In this case, the limit of the iteration (Φ) is S1(1,Z).
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Examples H(0, 0) 6= 0

Definition

F(Z1,Z2) is polynomial in the sorts Z1 when, for all n ≥ 0, the
species F=(.,n) =

∑
k≥0F=(k,n) is polynomial.

(The species is polynomial when the size is fixed in the other sorts.)

Examples:

Seq(Z1 + Z2): not polynomial in Z1 or Z2

Seq(Z1 · Z2): polynomial in Z1 and Z2 (but not in Z)

Z1Seq(Z2): polynomial in Z1 and not in Z2.

Well-founded Systems?
{
Y1 = Z + Y1Y2
Y2 = 1

{
Y1 = Z + Y2Y2

1

Y2 = 1
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Examples H(0, 0) 6= 0

Definition

F(Z1,Z2) is polynomial in the sorts Z1 when, for all n ≥ 0, the
species F=(.,n) =

∑
k≥0F=(k,n) is polynomial.

(The species is polynomial when the size is fixed in the other sorts.)

Examples:

Seq(Z1 + Z2): not polynomial in Z1 or Z2

Seq(Z1 · Z2): polynomial in Z1 and Z2 (but not in Z)

Z1Seq(Z2): polynomial in Z1 and not in Z2.

Well-founded Systems?
{
Y1 = Z + Y1Y2
Y2 = Z1

7

{
Y1 = Z + Y2Y2

1

Y2 = Z1

3
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Information given by the Jacobian Matrix

Role of the Jacobian Matrix (dependency graph of the system):

1 Well-founded systems at 0: nilpotence of ∂H/∂Y(0, 0)

2 Implicit polynomial species: nilpotence of ∂H/∂Y(Z,Y)
(detection of cycles in the graph)

3 Implicit partially polynomial species:
nilpotence of ∂H/∂Y(Z1, 0,S(Z1, 0))

(+ conditions on H and S(Z1, 0))

A = Z × B + C
B = Set(A)

C = Z + Seq(B)

 0 Z 1
Set(A) 0 0

0 Seq(B)2 0


A B

C

0 0 1
1 0 0
0 1 0


A B

C
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Information given by the Jacobian Matrix

Role of the Jacobian Matrix (dependency graph of the system):

1 Well-founded systems at 0: nilpotence of ∂H/∂Y(0, 0)

2 Implicit polynomial species: nilpotence of ∂H/∂Y(Z,Y)
(detection of cycles in the graph)

3 Implicit partially polynomial species:
nilpotence of ∂H/∂Y(Z1, 0,S(Z1, 0))

(+ conditions on H and S(Z1, 0))

A = Z × B + C
B = Set(A)

C = Z + B2

 0 Z 1
Set(A) 0 0

0 2B 0


A B

C

0 0 1
1 0 0
0 0 0


A B

C
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Information given by the Jacobian Matrix

Role of the Jacobian Matrix (dependency graph of the system):

1 Well-founded systems at 0: nilpotence of ∂H/∂Y(0, 0)

2 Implicit polynomial species: nilpotence of ∂H/∂Y(Z,Y)
(detection of cycles in the graph)

3 Implicit partially polynomial species:
nilpotence of ∂H/∂Y(Z1, 0,S(Z1, 0))

(+ conditions on H and S(Z1, 0))

4 Well-founded systems: both 1 and 3.

5 The key for Newton iteration.

But no information on the 0 coord. (depend on initial conditions).
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From Analytic Combinatorics to Species Theory

Analytic Combinatorics:

Symbolic method to describe
recursive combinatorial classes

A restricted set of
combinatorial constructions,
with a dictionary for gfs.

Powerful tools for enumeration
(singularity analysis,...)

Automatic random sampling
(Recursive, Boltzmann)

But no information on well-founded
systems...
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From Analytic Combinatorics to Species Theory

Analytic Combinatorics:

Symbolic method to describe
recursive combinatorial classes

A restricted set of
combinatorial constructions,
with a dictionary for gfs.

Powerful tools for enumeration
(singularity analysis,...)

Automatic random sampling
(Recursive, Boltzmann)

But no information on well-founded
systems...

Species Theory:

A more general framework
for combinatorial structures

Implicit species theorem
B Well-founded systems

Combinatorial Derivative
Labelle

Newton iteration
(Decoste, Labelle, Leroux)

Differential systems

But no analytic tools...
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IV Newton iteration
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Combinatorial Newton Iteration

Theorem (essentially Labelle)

For any well-founded system Y = H(Z,Y), if A has contact k
with its solution S and A ⊂H(Z,A), then

A +
∑

i≥0

(
∂H
∂Y (Z,A)

)i

· (H(Z,A)−A)

has contact 2k + 1 with S.

A +





A =k S,
S −A+ =k 0,

A + A+ =2k+1 S,
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Quadratic Iteration

Theorem (essentially Labelle)

For any well-founded system, the sequence Y [0] = 0 and

Y [n+1] = Y [n] +


∑

k≥0

(
∂H
∂Y (Z,Y [n])

)k

 ·
(
H
(
Z,Y [n]

)
−Y [n]

)

is well defined and converges quadratically to the solution S of the
system.

1. Itération de Newton combinatoire

Les structures engendrées par cette itération à l’étape n+1 sont des H-arborescences de Y [n]-structures.
On peut décomposer ces arborescences suivant la branche formée par les arêtes en pointillé cor-
respondant aux bourgeons de la suite des dérivées. La figure 1 donne un exemple de structure
engendrée à l’étape n + 1 de l’itération de Newton.

Fig. 1 – Exemple de Y [n+1]-structure obtenue par itération de Newton.

Exemple des arbres généraux Si l’on adapte ce résultat à l’exemple des arbres généraux
planaires que nous avons traité à la section 2.2.1, on obtient l’itération :

Y [n+1] = Y [n] + L(Z ⇥ L(Y [n])2)⇥ (Z ⇥ L(Y [n])� Y [n]), Y [0] = 0. (1)

La figure 2 représente le résultat des trois premières itérations. Les arbres bleus sont ceux qui
proviennent directement de l’itération précédente. Pour les autres arbres, nous avons représenté
en rouge les nœuds qui sont issus de L(Z ⇥ L(Y [n])2). Les rectangles noirs représentent les
cardinalités pour lesquelles le contact avec la solution est atteint. Il est intéressant de comparer
les espèces obtenues avec celles de la figure 9 (page 93). En e↵et, dès la troisième itération, on
a un contact d’ordre 5 avec l’espèce des arbres, alors qu’avec l’itération simple, pour le même
contact, il fallait aller jusqu’à la sixième itération.

Y [0] = ?

Y [1] = . . .

Y[2] = . . .

Fig. 2 – Premières étapes de l’itération de Newton pour les arbres généraux planaires.

Caractérisation de l’itération de Newton Comme pour l’itération simple, on peut ca-
ractériser les espèces successivement produites par l’itération de Newton : l’espèce Y [i] obtenue
à la i-ème étape de l’itération de Newton est l’ensemble des H-arborescences dont le nombre de
Strahler est au plus i. Tout d’abord, on définit un nombre de Strahler pour les arborescences
H-enrichies32. Soit � une H-arborescence ; si � = 0, alors son nombre de Strahler est 0, sinon,

32Il s’agit simplement d’une extension aux arbres généraux de la définition du nombre de Strahler pour les
arbres binaires. C’est le nombre de registres nécessaires à l’évaluation d’un arbre d’expression arithmétique.
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Rmk : Generation by increasing Strahler numbers.
Between Analytic Combinatorics and Species Theory 26/26



Intro Species of structures Well-founded combinatorial systems Newton iteration

Newton Iteration for Binary Trees Y = 1 + Z × Y2

Yn+1 = Yn +Seq(Z ×Yn×?+Z ×?×Yn)× (1 +Z ×Y2
n −Yn).

Y0 = 0 Y1 =

2

Y2 = + + + · · ·+ + · · ·

6

Y3 = Y2 + + · · ·+ + · · ·+ + · · ·

[Décoste, Labelle, Leroux 1982]
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