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Intro

“Algorithms for combinatorial structures”

Algorithms for c al structures: Well-founded

COMBINA' systems and Newton iterations *
SPECIES )
TREE-L|

Analytic
Combinatorics STRUCT!

F. BERGERON,
G, LABE!

LERC

@ Algorithms for analytic combinatorics:

o Enumeration in Quasi-Optimal Complexity
o Exponential and Ordinary Oracle
+ Differential Systems

@ Well-defined input provided by species theory.

Bonus: Unified framework for constructible combinatorial classes.
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Intro

Symbolic Method: combinatorial specifications

Definition 1.7. A specification for an r—muple A = (AV), ..., AD) of classes is a

collection of r equations,

AV = @A), A0
@ AD = y(AD, AN
AD = A0, A

where each ®; denotes a term built from the A using the constructions of disjoint
union, cartesian product, sequence, powerset, multiset, and cycle, as well as the initial
classes € (neutral) and Z (atomic)
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Intro

Symbolic Method: combinatorial specifications

YV=Z+2Z)Y
?/'
sV =Z2Y

Defnition 1.7. A specification for an r-nuple A = (A, AV) of classes is a | _ o

collection of r equations,
AL = @ADL A0 0 _
- A0 =m0 _ Y =Z+)

AD = @A, A
where each ®; denotes a term built from the A using the constructions of disjoint I

union, cartesian product, sequence, powerset, multiset, and cycle, as well as the initial \yl =Z4+ W

classes € (neutral) and Z (atomic)
\ Y2 = Z Y1 Spq(d2)
?

W=Z2+)3
=1

Nh=Z+I
Vo = Z + Y1 SEQ(D%)
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Intro

Symbolic Method: combinatorial specifications

Y=Z+Z)Y
0
Y =Z2)

Definition 1.7. A specification for an r—tuple A = (A", ..., AD) of classes is a /

collection of r equations,

AD = @ADL
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Symbolic Method: combinatorial specifications

Definition L7. A specification for an r—tuple A = (AD, ..., AV)) of classes is a

collection of r equations,
A =
' o 2

o L

1 (AD, .., A0)
(29) Dy (AD, ., A0

O (AD, ..., A
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0
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/

? =y:Z—}_y
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Il
N

=)
QAT S

V1= Z + )2
V=1
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Intro

Symbolic Method: combinatorial specifications

Y=Z+Z)Y

o
Y =ZY

Definition 1.7. A specification for an r—tuple A = (A", ..., AD) of classes is a /
collection of  equations,
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Intro

Symbolic Method: combinatorial specifications

YV=Z2+2Z2Y
="
T V=ZY

| _— *

Definition L7. A specification for an r—tuple A = (AD, ..., AV)) of classes is a
collection of  equations,

AV = @D, An) "
. A =0 [ > V — Z + y
AD = o (AN, A
where each ®; denotes a term built from the A using the constructions of disjoint '?
union, cartesian product, sequence, powerset, multiset, and cycle, as well as the initial T =Z
classes & (neutral) and Z (atomic). N + Y2
/ / \ \ Vo = Z V1 SEQ(D%)

V= z+yz2

=Z+)3
\ \ )

=24+
y2 = Z + )1 SEQ()%»)

ﬁm;

Nﬁm

N =Z+>

MH=1 B:z+c
=Z 2
W + Wi C - zc

V=1
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Intro

Symbolic Method: combinatorial specifications

vz oz
> N1 = Cycle(Union(N16,Prod(N16,Prod(Prod(Z,Cycle(N16)),NT))))
N2 = Prod(N8,N8)
N3 = Union(Cycle(Prod(Z,Prod(N2,Prod(Set(Z),Union(N14,2))))),Sequence (Prod(Z,Cycle(N14))))
N4 = Prod(Set (Prod(Z,Sequence(Prod(N8,Z)))),N8)
N5 = Set (Union(Prod(Z, Sequence (Prod (N1, Sequence[[Union(Z, Sequence(N11)))))),Prod(NL1, Sequence(N11)))
N6 = Union(Cycle(Prod(N11,N4)),Cycle(Union(N11,Union(N11,2))))
N7 = Cycle(Prod(N15,Prod(Prod(Sequence(N15),Z),N15)))
N8 = Union(N8,Prod(Sequence (Prod(Prod (Prod(Z,Z),Union(N8,N8)), Union(N8,N8))) N8))
N9 = Set(Prod(Prod (Union(N5,Cycle(Z)),2),%))
N10 = Prod(Prod(Cycle(Union(Z,Z)),N10),Union(Cycle(N13),Cycle(Prod (Prod(N13,Cycle(N13)),N10))))
N11 = Prod(Union(Set (Prod(Sequence(Z),Prod(N12,N5))),N5),2)
N12 = Prod(N19,Cycle(Prod(N19,Prod(Z,Prod(Prod (Prod (Sequence(Z),Z),N1),Prod(N19,N19))))))
Y| N3 = Prod(Sequence(N17),Union(N17,Union(Prod(N17,Sequence(Prod (Prod(N17,N17),N17))),2)))
N14 = Prod(Prod(Prod(Prod(Z,N13),2),Z),Cycle(Union(Z,Prod(Z,Cycle(N13)))))
N15 = Prod(Prod(N2,Union(Z,2)),Z)
N16 = Prod(Prod(Prod (Prod(Cycle(Z), Sequence (Prod(Set (Z),Union(N15,2)))),2), %), Set (Prod(Z,N10))
N17 = Prod (Prod (Sequence(Z),Prod(N9,Union(N17,2))),%)
N18 = Union(Union(Z,Prod(Cycle(N20),Z)),Prod(Prod(N20,Union(N20, Union (Union(N20,2),Z))),Set (N20)))
N19 = Union(Prod(N11,Prod(Sequence(N11),Sequence(Z))),Prod(N4,Prod(Set (Prod(Z,N11)),2)))
N20 = Prod(Union(N19,Prod(N19,Cycle(N19))),Z)
T — I
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Nl ) Cp (
Nl

4 )
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Species of structures

Il Elements of Species Theory
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Species of structures
The key point

Theorem (Implicit Species Theorem - Joyal 81)

Let H be a vector of multisort species, such that
@ 7(0,0) =0 and
o the Jacobian matrix OH /0Y(0,0) is nilpotent.

The system of equations
Y=H(Z,Y)

admits a vector 8 of species solution such that S(0) = 0, which is
unique up to isomorphism.

y

e H(0,00=07
@ What about the other condition?

o Is it a well founded system?
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Species of structures
Definition

Definition (Species F)
A species of structures F is a rule that,
@ V finite set U produces a finite set F[U], and
@ V bij. 0 : U — V produces a bij. Flo]: F[U] — F[V],

with F[ldy] = ldzjy; and F[r o 0] = F[r] o F[o] for any bijections o and 7.

F[U]-structure : ~> Species F:
¥ ¥
labeled!
U={o,e,0 0 0} labeled and unlabelled...
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Species of structures
Exemples

the empty species 0, defined by 0[U] = (), VU.
the species 1 (the empty set) defined by
1[U] = 0 if U # 0 and 1[0] = {0}.
the species Z of singletons, defined by
Z[U] ={U} if |U| =1 and Z[U] = 0 otherwise.
The species SET of sets, defined by SET[U] = {U}.

The species SEQ of sequences (or linear orders) defined by

SEQ[] = {0} and for U = {u1,...,un} # 0,
SEQ[U] = {(ua(l), ceey ua(,,)) | o c 'Pn}.
The species CYC of of cycles, defined by Cyc[0] = 0 and for U # 0,
Cyc[U] = {o | 0 € P[U] is composed of a unique cycle}.

(4]

(4]

(]

(4]

In all cases, the transport F[o] is (obvious) carried out in the natural fashion...
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Species of structures
Sequences and Permutations

@ The species SEQ of sequences is defined by SEQ[)] = {0} and for
U={u1,...,un} #0, SEQ[U] = {(Us(1), - - -+ Us(n)) | & € Pn}.
@ The species P of permutations is defined by
PlUl={y:U—U|VveU3ue U (u)= v}

Let U={1,2,3}, V ={1,2,3} and (1) =2, 0(2) = 3, 0(3) = 1,

e SEQ[U] =1{(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1)}
11 1—-1 1—-2 1—-2 1—-3 1—3

e PlU=¢2—2,2-53,2-1,2-3,2=1,2=2
3—+3 3—+2 3—-3 3—+1 3—-2 3-=1
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Species of structures
Sequences and Permutations

@ The species SEQ of sequences is defined by SEQ[)] = {0} and for
U={u1,...,un} #0, SEQ[U] = {(Us(1), - - -+ Us(n)) | & € Pn}.
@ The species P of permutations is defined by
PlUl={y:U—U|VveU3ue U (u)= v}

Let U={1,2,3}, V ={1,2,3} and (1) =2, 0(2) = 3, 0(3) = 1,

e SEQ[U] =1{(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1)}
11 1—-1 1—-2 1—-2 1—-3 1—3

e PlU=¢2—2,2-53,2-1,2-3,2=1,2=2
3—+3 3—+2 3—-3 3—+1 3—-2 3-=1

o SEQ[o] = {(1,2,3) = (2,3,1), (1,3,2) = (2,1,3),...}
11 2—=2 1—=1 22

@ Plo]=4 22 - 3—-3,2—-3 - 3—-1,...
3—3 1—-1 3—=2 13

Between Analytic Combinatorics and Species Theory 9/26



Species of structures
Operations on Species

@ The Sum of species:
(F+G)[U] = FlU] + G[U]
@ The Product of two species F and G:
(F- o= >  Flulxdgul
(U1,Un),U=U1+U,
@ The Composition of F with G (also denoted by F(G)):
(Foqul= >  Flalx ][ dll

7 partition of U pem

with G[0] =0
99 il
3 F . ¥ ;
E g
g
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Species of structures

Example: the species 7 = Set(Cyc(Z2))

For U={1,2,3}, SEQ(CyC)[U]=

T b O O




Species of structures

Example: the species 7 = Set(Cyc(Z2))

For U= {1,2,3}, SEQ(Cvc)[U] =

o 80 P OO

What about the species of Permutations?
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Species of structures

Example: the species 7 = Set(Cyc(Z2))

For U= {1,2,3}, SEQ(Cvc)[U] =

.. 8.5 0O

@ Two species are equal if they produce the same sets and bijections.
@ An isomorphism from F to G is a family of ol al]
bijections oy : F[U] — G[U] such that: FMJ JG[(]]

. _ . . FIV—Y Gy
Il isomorphic structures are a different notion !!

@ = denotes a combinatorial equality between isomorphic species.
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Species of structures
Combinatorial Systems

Y=H(Z)):

Vi =Hi(Z,01,)0,..., Vm)
Vo =Ha(Z,01,)0,...,Vm)

ym :Hm(Z7y17y27"'7ym)

multisort species: V finite sets Ui, ..., Uk, produces a set F[Us, ..., Uk
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Species of structures
Combinatorial Systems

Y=H(Z)):

Vi =Hi(Z,01,)0,..., Vm)
Vo =Ha(Z,01,)0,...,Vm)

ym = Hm(Z,yl,yg, e

Solution :
H-rooted trees.

multisort species: V finite sets Ui, ..., Uk, produces a set F[Us, ..., Uk
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Species of structures

Digression: generating series

Definition

Exponential generating series of F : F(z) =3 72, n%?
Ordinary generating series of F : F(z) = 724 faz".

Cycle index series of F :

Z]:(Zl,22,23,... Z I (Z fIXF[U]Zflng : > (]_)

n>0 g€Pn

where o; is the number of cycles of length i in the cycle
decomposition of the permutation ¢ and fix F[o] is the number of
F-structures on {1,..., n} fixed by Flo].

— Pl — 2 3
F(z) = Zr(z,0,0,...) and F(z) = Zx(z,2°,2°,...).



Species of structures
Derivative

Definition (Derivative)

The derivative F' of a species F is defined by F'[U] = F[U + {*}],
where x is an element chosen outside of U.

(Fog) = F(G) - G

species derivative species  derivative
A+B A+ 8 SEQ(B) SEQ(B) - B’ - SEQ(B)
A-B A-B+A-B Cyc(B) SEQ(B)-B

SET(B) SET(B) -5
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Species of structures

Jacobian matrix of Y = H(Z,Y) : OH/0Y

Example:

H(G,S,P) = (S + P,SEQ(Z + P), SET(Z + S)).

0 1 1
a
6—H= 0 0 SEQ(Z 4+ P) - 1-SEQ(Z + P)
Y 0 SET(Z+S)-1 0

Not nilpotent at (0, 0): successive powers

011 010 011
00 1], 010], 00 1].
010 001 010

OH; 07‘[@1 (97{[,(
Vi, Vi, T,

Rmk: (B’H/By)k‘(i’j) —
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Species of structures

Jacobian matrix of Y = H(Z,Y) : OH/0Y

Example:

H(G,S,P) :=(S+P,Z2-SEQ(Z + P),SET(Z + S5)).

OH 0 1 1
5y 0 0 SEQ(Z + P)-Z-SEQ(Z + P)
Y 0 SeET(

Z+48)-1 0
Nilpotent at (0,0): successive powers

0 11 010
00 0], 00 0],
0 10 0 0O
87{/07‘[@1 (97{[,(

Rmk: (3'7"[/337)“(,-7]-) = oy, 9., Y,

O O O

0
0
0

o O O
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Well-founded combinatorial systems

11l Well-founded combinatorial

systems
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Well-founded combinatorial systems

Back to Joyal’s Implicit Species Theorem

If H(0,0)= 0 and OH/OY(0,0) is nilpotent, then Y = H(Z,)Y)
has a unique solution, limit of

yll — g, yirtll — gz Yy (n>0).

Def. A =, B if they coincide up to size k (contact k).

If yintil =yl then plrtr+tl =, yltel (o = dimension).

g
¥ E P Yo v :m e
Y ?j o E"' ?J ) 0 Yy
.. - & YL T 0 L K
0
["‘ ?3 e e
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Well-founded combinatorial systems

The nature of combinatorial systems...

Joyal's Implicit Species Theorem is too restrictive:
@ We don't want the condition H(0,0) = 0.
@ To allow equations such as Y =1+ Z).

@ We want to characterize precisely which are the systems that
define combinatorial structures > well-founded systems.

Bonus :
A better understanding of the role played by the Jacobian matrix
and a better knowledge of the structure of combinatorial systems.
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Well-founded combinatorial systems

General Implicit Species Theorem

Theorem (General Implicit Species Theorem)

Let H = (H1.m) be any vector of species, such that the system
Y =H(Z,Y) is well-founded. This system admits a solution S
such that S(0) = H™(0,0), which is unique up to isomorphism.

Definition (Well-founded combinatorial system)

Y =H(Z,Y) is said to be well-founded when the iteration

YO =0 and Y =22y, n>o0 (®)

@ is well-defined,

o defines a convergent sequence

@ and the limit & of this sequence has no zero coordinate.

v
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Well-founded combinatorial systems

Examples 7(0,0) =0

Joyal's conditions:
Y =SEQ(Z2) v Y = SEQ(Z SEQ(Z)) vV Y = SEQ(SEQ(Z)) X

H'(0) =0 H'(0) =0 H'(0) not defined!
y=2yv y=ZzZ+zYyV/ y=Z2+YKX
H'(0,00=0  #(0,0)=0 2/(0,0) = 1
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Well-founded combinatorial systems

SET S 7#(0,0) =0

Joyal's conditions:
Y =SEQ(Z2) v Y = SEQ(Z SEQ(Z)) vV Y = SEQ(SEQ(Z)) X

H'(0) =0 H'(0) =0 H'(0) not defined!
y=2yv y=ZzZ+zYyV/ y=Z2+YKX
H'(0,00=0  #(0,0)=0 2/(0,0) = 1

With our conditions:

Y=ZY X because) =0.

How to detect 0 coordinates:
Look for 0 in H™(Z,0).
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Well-founded combinatorial systems

Examples 7(0,0) =0

Joyal's conditions:
Y =SEQ(Z2) v Y = SEQ(Z SEQ(Z)) vV Y = SEQ(SEQ(Z)) X

H'(0) =0 H'(0) =0 H'(0) not defined!
y=2yv Y=2+2ZyV y=2+yX
1(0,00=0  #(0,0)=0 2/(0,0) = 1
With our conditions: Examples:
=Z b =0.
Yy yX ecause Y A=B A=B
How to detect 0 coordinates: B=C¢C B=Z+C
Look for 0 in H™(Z,0). C=Z2 C=2zC
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Well-founded combinatorial systems

Well founded at 0

Algorithm 0-coord: Detection of zero coordinates in the solution of a system

Input: H = (Hi.m): a vector of species such that #H(0,0) = 0 and the
Jacobian matrix @H/8Y(0,0) is nilpotent.

Output: Answer to “Are there 0 coordinates in the solution of the system

Y=H(ZY)

begin
Compute U :=H™(Z,0)
foreach coordinate C of U do
L if C =0 then return YES

return NO
end

Algorithm isWellFoundedAt0: Characterization of well-founded systems at 0
Input: H = (H1.,): a vector of species such that H(0,0) = 0.
Output: Answer to “Is the system Y = H(Z,Y) well-founded at 077
begin
Compute J := H/8Y(0,0)

if J™ =0 then return 0-coord(H) else return NO
end
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Well-founded combinatorial systems

SET S 7#(0,0) =0

_(0 0>
00 \0 0

Vi=Z v < 0 0 >
yZ =Z y]_ SEQ(y2) ZSedn) 20 Sr:(z(y2)2

=Z + y2 ‘/ (O 1)
yz = Z V1 SEQ(J%) 00

_(0 1)
0.0 10

W=Z+Ih X ( 0 1 )
Vo = Z + Y1 SEQ(D2) SEQ(Y2) V1 SEQ(D2)?
{ 0

W=Z+)3 v <0 o>
Vo =1
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Well-founded combinatorial systems

Algorithmic Characterization

Definition (Companion system of Y = #(Z2,)))
The species 1 is replaced by the sort Z;:

Y=K(21,2,Y), where K=H(Z,V)—H(0,0)+2,#(0,0).

Theorem (Characterization of well-founded systems)

The system' Y = H(Z,Y) is well-founded if and only if
Q the companion system'Y = IC(Z21, Z,Y) is well-founded at 0

(Joyal's conditions without zeroes)

@ the solution 81(Z1, Z) of the companion system is
polynomial in Z;.

In this case, the limit of the iteration (¢) is S1(1, Z).

v
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Well-founded combinatorial systems

SET S 7(0,0) #0

Definition

F(Z1,2,) is polynomial in the sorts Z; when, for all n > 0, the
species F_(_n) = D k>0 F=(k,n) IS polynomial.

(The species is polynomial when the size is fixed in the other sorts.)
Examples:

@ SEQ(Z1 + Z3): not polynomial in Z; or Z;
@ SEQ(Z; - Z3): polynomial in Z; and 25 (but not in Z)
o Z1SEQ(Z,): polynomial in Z1 and not in Z5.

Well-founded Systems?

N =Z+I V1= Z+ )2
y2:1 ygzl
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Well-founded combinatorial systems

SET S 7(0,0) #0

Definition

F(Z1,2,) is polynomial in the sorts Z; when, for all n > 0, the
species F_(_n) = D k>0 F=(k,n) IS polynomial.

(The species is polynomial when the size is fixed in the other sorts.)
Examples:

@ SEQ(Z1 + Z3): not polynomial in Z; or Z;
@ SEQ(Z; - Z3): polynomial in Z; and 25 (but not in Z)
o Z1SEQ(Z,): polynomial in Z1 and not in Z5.

Well-founded Systems?

N =Z+I X V= Z+ )2 4
W =2 Vo = 2
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Well-founded combinatorial systems

Information given by the Jacobian Matrix

Role of the Jacobian Matrix (dependency graph of the system):
Q Well-founded systems at 0: nilpotence of 9H/0Y(0,0)

@ Implicit polynomial species: nilpotence of H/OY(Z,Y)
(detection of cycles in the graph)

© Implicit partially polynomial species:
nilpotence of OH/0Y(Z1,0,8(Z1,0))
(+ conditions on ‘H and §(Z21,0))

A = ZxB+C 0 P 1 0 0 1
B SET(A) Ser(4) 0 0 100
C = Z+SEeq(B) 0 SEqQ(B)* 0 010

o
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Well-founded combinatorial systems

Information given by the Jacobian Matrix

Role of the Jacobian Matrix (dependency graph of the system):
Q Well-founded systems at 0: nilpotence of 9H/0Y(0,0)

@ Implicit polynomial species: nilpotence of H/OY(Z,Y)
(detection of cycles in the graph)

© Implicit partially polynomial species:
nilpotence of OH/0Y(Z1,0,8(Z1,0))
(+ conditions on ‘H and §(Z21,0))

A = ZxB+C 0 z 1 0 0 1
B = SET(A) SET(A) 0 O 100
C = Z4+B 0 280 0 00

i
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Well-founded combinatorial systems

Information given by the Jacobian Matrix

Role of the Jacobian Matrix (dependency graph of the system):

© Well-founded systems at 0: nilpotence of 8% /9Y(0,0)
@ Implicit polynomial species: nilpotence of 9H/OY(Z,Y)

(detection of cycles in the graph)

© Implicit partially polynomial species:
nilpotence of OH/0Y(Z1,0,S8(Z1,0))
(+ conditions on ‘H and S(Z1,0))

©Q Well-founded systems: both 1 and 3.

© The key for Newton iteration.

But no information on the 0 coord. (depend on initial conditions).
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Well-founded combinatorial systems

From Analytic Combinatorics to Species Theory

Analytic Combinatorics:
@ Symbolic method to describe
recursive combinatorial classes

@ A restricted set of
combinatorial constructions,
with a dictionary for gfs.

@ Powerful tools for enumeration
(singularity analysis,...)

@ Automatic random sampling
(Recursive, Boltzmann)

But no information on well-founded

systems...

Between Analytic Combinatorics and Species Theory 26/26



Well-founded combinatorial systems

From Analytic Combinatorics to Species Theory

Analytic Combinatorics: Species Theory:
@ Symbolic method to describe @ A more general framework
recursive combinatorial classes for combinatorial structures

(]

o A restricted set of Implicit species theorem
combinatorial constructions, > Well-founded systems

with a dictionary for gfs. Combinatorial Derivative

@ Powerful tools for enumeration Labelle
(singularity analysis,...)

(4]

@ Newton iteration
@ Automatic random sampling (Decoste, Labelle, Leroux)
(Recursive, Boltzmann)

Differential systems

But no information on well-founded But no analytic tools...
systems...
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Newton iteration

IV Newton iteration
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Newton iteration

Combinatorial Newton lteration

Theorem (essentially Labelle)

For any well-founded system Y = H(Z,Y), if A has contact k
with its solution S and A C ‘H(Z, A), then

A+Z< (2, A)l-(’H(Z,A)—A)

i>0

has contact 2k + 1 with S.

A
A A=(S,
A + ‘A+ _ H ‘A + — A+ =k 07
) g A+ A" =51 S,
A
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Newton iteration

Quadratic lteration

Theorem (essentially Labelle)

For any well-founded system, the sequence Yl =0 and

it =yl 5" (Z?;(z y "1)> (% (2,91) - i)
k>0

is well defined and converges quadratically to the solution 8 of the
system.

v

.‘/ )
- Vf’"]

y[m]
VD“]
Rmk : Generation by increasing Strahler numbers.
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Newton iteration

Newton lteration for Binary Trees Y=1+Zx)?

Vg1 =Vn +SEQ(Z X Vp X *x+ Zx %X V) x (1+Z x V2> —V,).
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Newton iteration

Newton lteration for Binary Trees Y=1+Zx)?

Vg1 =Vn +SEQ(Z X Vp X *x+ Zx %X V) x (1+Z x V2> —V,).

Yo=0 V1= o

___.<g 4+ ..

V: =|  + + 4ot
SR P
6 A

Vi =M+ <é Lo % 41+ A
e

[Décoste, Labelle, Leroux 1982]
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