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Singular Models

We focus on 5 models, called the singular models.

AV T

For each singular model we get

Explicit expressions for Q(z) = 3 gn2™;
Asymptotic expressions for g¢,;
Proof that @Q(z) is not D-finite;

Fast calculation of g,.
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Motivation

XN % XX

Only unit step models with proven non D-finite GF's;

Not amenable to the techniques of
Fayolle/Kurkova/Raschel,

These models are well suited to the iterated kernel method
[van Rensburg, Prellberg, and Rechnitzer 2008].
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Of 28 = 256 step sets, there are 79 non-isomorphic 2D models
[Bousquet-Mélou & Mishna 2010]. Subsets of

<

correspond to half space problems, which have been previously
solved [Banderier & Flajolet 2002].

Subsets of

2

will never leave the origin.
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Ex: With

X

we define the characteristic function

t tr
S(z,y) :=tzy + Zy + v
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The Kernel Equation

Re-group terms and multiply by zy to give:

K(z,y)-zyQ(z,y)=2zy—ty>Q(y,0)—tz2Q(z,0)

(K)

where K(z,y) =1 — S(z,y) is called the kernel of the walk.

Q(1,1;t) = GF of total # of walks

Q(0,y;t) = GF of walks returning to the y-axis.

Related to a group Gs of transformations of the plane.
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The Iterated Kernel Method
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we have the functional equation

ey K (2,y)-Q(z,y)=2y—ty>Q(y,0)—tz2Q(z,0) (K)

where

zyK(z,y)=1-S(z,y)=1— t(a:2 + 12 + m2y2).

Note that
1-2tQ(1,0)

QL1 =1
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An Explicit Formula
Let Yi(z;t) be the root of K(z,y) with Y; = zt + O(zt?).

Let Y, be Y7 composed with itself n times.

Substituting y = Y1(z;t) and z = Yi(z; ¢):
0=zY1 —tY7Q(¥1,0) -tz’Q(z,0)
0="Yy —tY2Q(Y3,0) —tY7?Q(Y1,0)
0=YaYs —tY2Q(Y3,0) —tY7Q(Y3,0)

Theorem (Mishna & Rechnitzer 09; M. & Mishna 13)
For the three symmetric singular models

Qz,0) = 3 Y (-1 Va(zi )Y a(2: ).
n>0
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Implications

Corollary (Fast Generation)

It is possible to calculate o, q1,-..,qn in O(N?®) operations
for each symmetric singular model.

Corollary (Asymptotics)
The following asymptotic estimates hold:

~ ka3 +0((2v2)")
5 ks +0 ((1+2v2)")
% Ko5™ + O ((1 + 2\/§)n)

Eztends results of [Fayolle & Raschel 2011].
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Proposition

For each model 1/Y,, satisfies a linear recurrence of order 2
— solving gwves an explicit form.

Ex: For the three step model

— 1 (¢ — ¢*™) + q(¢*™ — 1)Y,
Y, = =

Y, (#) q"(¢® - 1)
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Implications

Proposition

For each model 1/Y,, satisfies a linear recurrence of order 2
— solving gwves an explicit form.

Ex: For the three step model

v o._ L (@) +el@ - 1Yy
noT o n(g2 —
Y, (#) q"(¢® - 1)

Corollary (Non D-Finiteness)

The generating function Q(1,1) for each symmetric singular
walk 1s non D-Finite.

Proof Idea.
Each Y, contributes a unique singularity. O
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Uniformization

Biggest challenge is showing that the singularities are
unique.

Equivalent to proving that two polynomials with arbitrary
exponents share no roots off the unit circle.

Algebraic manipulation (Grébner Basis, etc.) not
sufficiently powerful.

Uniformization used by Kurkova, Fayolle, and Raschel gives
another parametrization of Y,,.
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Uniformization

For explicit functions z3, 4, 7, and sp:

"\1+¢q2 T4 — T3 (q"T — $0)(q"T — 1/50)

Implies poles satisfy ¢" = so/7 or ¢" = 1/(so7);
Gives simple proof singularities are distinct;

Works even though the original method does not apply to
singular walks.
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Non-Symmetric Cases

This is harder as Q(1,0) # Q(0,1).

We solve K(z,y) for z and y, and treat Q(z,0) and Q(0,y)
separately.

Luckily, there are an infinite number of singularities on the
imaginary axis — in both cases.

1‘ 1.125 1.25 1‘ 1.125 1.25
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Conclusion

The Iterated Kernel Method gives:

Explicit series representation of Q(z);

Asymptotic results for g,;

Proof of infinite singularities for Q(z);

Cubic time algorithm for g,,.
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Next Steps

How else can we use the boundary value method?

Extension to 3D walks
Problem: Getting terms to cancel

Longer steps
Problem: No Uniformization
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