Le modèle d'Ising planaire : une étude par les dimères

Cédric Boutillier

UPMC

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Le modèle d'Ising sur un graphe

Introduit par Lenz en 1920 pour modéliser le ferromagnétisme

- G = (V, E) graphe fini (cristal)
- ► (J_e)_{e∈E} constantes d'interations > 0
- configuration $\sigma: V \rightarrow \{-1, +1\}$
- probabilité sur les configurations

$$P_{\beta,J}(\sigma) = \frac{1}{Z_{\mathcal{G}}(J,\beta)} exp\left(\beta \sum_{e=\{v,w\}} J_e \sigma_v \sigma_w\right)$$

fonction de partition

$$Z_{G}(J,\beta) = \sum_{\sigma} \exp\left(\beta \sum_{e=\{v,w\}} J_{e}\sigma_{v}\sigma_{w}\right)$$

Le modèle d'Ising sur une carte

- ► G dessiné sur une surface telle que les faces sont des disques
- configuration \rightarrow contours sur G^*
- modèle de contours aléatoires

Formellement

$$\exp(\beta J_e \sigma_v \sigma_w) = e^{\beta J_e} \left(\delta_{\sigma_v \sigma_w} + e^{-2\beta J_e} \delta_{\sigma_v \overline{\sigma_w}} \right)$$

- poids d'une arête e^* : $e^{-2\beta J_e}$
- poids d'une famille de contours : produit des poids des arêtes

développement basse température

Autre développement en contours sur G

$$\exp(\beta J_e \sigma_v \sigma_w) = \cosh \beta J_e + \sigma_v \sigma_w \sinh \beta J_e$$
$$= \cosh \beta J_e \left(1 + \sigma_v \sigma_w \tanh \beta J_e\right)$$

Développement de

$$Z \propto \sum_{\sigma} \prod_{e=\{v,w\}} (1 + \sigma_v \sigma_w \tanh \beta J_e)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Chaque σ_v vient avec un σ_w , avec $v \sim w$: monône = graphe

Somme sur σ : ne restent que les graphes de degré pair : contours

Développement en contours et dualité

Le modèle d'Ising sur G donne deux mesures sur les contours

Basse température

$$\blacktriangleright \ e^{\beta J_e \sigma_v \sigma_w} \propto \delta_{\sigma_v \sigma_w} + e^{-2\beta J_e} \delta_{\sigma_v \overline{\sigma_w}}$$

contours sur G*

• poids de
$$e^*$$
 : $\exp(-2\beta J_e)$

Haute température

•
$$e^{eta J_e \sigma_v \sigma_w} \propto 1 + \sigma_v \sigma_w$$
 tanh $eta J_e$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- contours sur G
- ▶ poids de e : tanh(βJ_e)

Dualité : le développement haute température du modèle d'Ising sur $(G, (J_e)_e, \beta)$ donne la même mesure sur les contours que le développement basse température du modèle d'Ising sur $(G^*, (J_{e^*}^*), \beta^*)$ si

$$\tanh(\beta J_e) = \exp(-2\beta^* J_{e^*}^*)$$

(si G est planaire)

Correspondance de Fisher

Contours sur $G \leftrightarrow$ modèles de dimères sur G_D (exemple de réduction holographique [Valiant])

イロト 不得 トイヨト イヨト

3

 G_D dessiné sur la même surface que G.

Correspondance de Fisher

Contours sur $G \leftrightarrow$ modèles de dimères sur G_D (exemple de réduction holographique [Valiant])

 $\begin{array}{ll} G_D \text{ dessiné sur la même surface que } G. \\ \text{préservation de la mesure : } w_e = \begin{cases} \tanh(\beta J_e) & \text{si e provient de G,} \\ 1 & \text{sinon} \end{cases} \end{array}$

Théorie de Kasteleyn pour les dimères

Théorème (Kasteleyn, Fisher-Temperley)

Si G_D est planaire, la fonction de partition du modèle de dimères est donnée par le pfaffien d'une matrice d'adjacence pour une certaine orientation (« clockwise odd »).

$$Z_D = \operatorname{Pfaff}(K) = \sqrt{\det K}$$

- K : matrice de Kasteleyn
 - On peut calculer les correlations

$$P[(v_1, v_2), \dots (v_{2k-1}, v_{2k})] = \left(\prod_{j=1}^k \mathcal{K}(v_{2j-1}, v_{2j})\right) \operatorname{Pfaff}(\mathcal{K}^{-1}(v_i, v_j))$$

 Si le graphe n'est pas planaire mais sur une surface de genre g, il faut 2^{2g} pfaffiens [Tesler, Gallucio-Loebl, Cimasoni-Reshetikhin]

pour les réseaux infinis réguliers

- *G* : réseau bipériodique, $G_n = G/(n\mathbb{Z})^2$
- K(z, w) matrice de Kasteleyn modifiée sur G1
- polynôme caractéristique $P(z, w) = \det K(z, w)$
- transition de phase?

Théorème (Li, Cimasoni & Duminil-Copin)

La température (inverse) critique β_c est l'unique valeur de $\beta \in \mathbb{R}^*_+$ telle que P(z, w) s'annule sur le tore. Cette racine est en (1, 1) et la multiplicité est 2.

Exemple de
$$\mathbb{Z}^2$$
 : $P(1,1) = 4(1 - 2x - x^2)^2$ avec $x = tanh(\beta J)$,
donc $x_c = \sqrt{2} - 1$, $(\beta J)_c = \log(1 + \sqrt{2})$.

Modèle d'Ising : modèle intégrable

à partir de G et G^* : G^\diamond graphe diamant

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Modèle d'Ising : modèle intégrable

à partir de G et G^* : G^\diamond graphe diamant

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

Modèle d'Ising : modèle intégrable

à partir de G et G^* : G^\diamond graphe diamant

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

train-track : suite de diamants traversés

Hypothèses

- un train-track ne s'auto-intersecte pas
- deux train-tracks se coupent au plus une fois

équivalent à l'existence d'un plongement isoradial : toutes les faces de G sont inscrites dans un cercle de rayon 1 [Kenyon-Schlenker]. Les diamants sont des losanges.

Hypothèses

- un train-track ne s'auto-intersecte pas
- deux train-tracks se coupent au plus une fois

équivalent à l'existence d'un plongement isoradial : toutes les faces de G sont inscrites dans un cercle de rayon 1 [Kenyon-Schlenker]. Les diamants sont des losanges.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Exemples de graphes isoradiaux

・ロト ・四ト ・ヨト ・ヨト

- 2

Dans la suite on prendra $\beta = 1$.

Équation de Yang-Baxter

représentation graphique : $A, a \cdots = e^J$

$$R \cdot abc = ABC + \frac{1}{ABC}$$
$$R \cdot \frac{a}{bc} = \frac{A}{BC} + \frac{BC}{A}$$
$$\vdots \qquad \vdots$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

résolution : f(A, B, C) = k surface de genre 1 paramétrisation explicite en fonction des angles des losanges

$$\sinh(2J(heta)) = rac{\mathrm{sn}\left(rac{2K(k)}{\pi} heta|k
ight)}{\mathrm{cn}\left(rac{2K(k)}{\pi} heta|k
ight)}$$

dualité : $k^* = \frac{ik}{\sqrt{1-k^2}}$ cas « critique » : k=0, $J(\theta) = \log \sqrt{\frac{1+\sin\theta}{\cos\theta}}$ pour $\theta = \frac{\pi}{4}$, on retrouve $(\beta J)_c = \log(1+\sqrt{2})$.

Théorème (Kenyon)

Kenyon : le flip est transitif sur tous les pavages par losanges d'une région simplement connexe

Conséquence

changer le graphe en dehors d'un domaine ne change pas les probabilités des événements locaux.

Comment utiliser ça pour dire des choses sur le modèle d'Ising ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Modèle d'Ising isoradial critique

Théorème (B-de Tilière)

• expression explicite pour K^{-1} sur G_D

$$\mathcal{K}^{-1}(v,w) = \frac{1}{4\pi^2} \oint \log z \prod_{e^{i\alpha_j} \in \gamma: v \to w} \frac{z + e^{i\alpha_j}}{z - e^{i\alpha_j}} f_v(z) f_w(-z) dz$$

- construction de la mesure de probabilité sur un graphe isoradial infini à partir de K⁻¹
- Iorsque le graphe est périodique, énergie libre :

$$f_{I} = -\lim_{n \to \infty} \frac{1}{n^{2}} \log Z(G_{n}) = -|V_{1}| \frac{\log 2}{2} - \sum_{e \in E_{1}} \left[\frac{\theta_{e}}{\pi} \log \tan \theta_{e} + \frac{1}{\pi} \left(L(\theta_{e}) + L\left(\frac{\pi}{2} - \theta_{e}\right) \right) \right]$$

 $o\dot{u} L(x) = -\int_0^x \log 2 \sin t dt$

Retour au modèle d'Ising général

Deux modèles d'Ising indépendants.

configuration XOR : produit point par point des spins

Que peut-on dire des contours séparant les amas de même spin XOR ?

Étude motivée par une conjecture de Wilson

Conjecture (Wilson)

La limite d'échelle des contours séparant les amas de spins ± 1 dans le modèle d'Ising XOR critique sont les lignes de niveau du champ libre gaussien dont l'écartement est $\sqrt{2}$ fois plus important que pour le modèle des doubles dimères sur le réseau carré. Soient (P, P') des contours provenant du double modèle d'Ising

Superposition de P et P'.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition de deux nouvelles configurations d'arêtes :

- Mono(P, P') : arêtes monochromatiques
- Bi(P, P') : arêtes bichromatiques

Arêtes monochromatiques

Arêtes monochromatiques de $P \cup P'$.

Lemme

Mono(P, P') est l'ensemble de contours séparant les amas de ± 1 dans la configuration XOR.

But : comprendre la loi des arêtes monochromatiques.

Arêtes bichromatiques

Soient P, P' deux familles de contours sur G. Mono(P, P') separe la surface en composantes connexes $(\Sigma_i)_i$

Lemme

Dans chaque Σ_i , la restriction de Bi(P, P') est le dév. basse temp. d'une configuration Ising sur $G^*_{\Sigma_i}$, avec des constantes de couplages $2J_{e^*}$.

Probabilité d'une configuration monochromatique

Lemme

Supposons que Q est une famille de contours paire sur G, coupant Σ en n_Q morceaux, et que pour tout i, Q_i est une famille de contour dans G_{Σ_i} .

Alors, il y a 2^{n_Q} paires (P, P') de familles de contours qui ont Q comme arêtes monochromatiques et Q_1, \dots, Q_{n_P} comme arêtes bichromatiques.

Notons W(Q) la contribution à la fonction de partition des paires de contours (P, P') Mono(P, P') = Q.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Corollaire

$$\blacktriangleright W(Q) = \mathcal{C}(\prod_{e \in Q} e^{-2J_{e^*}}) \prod_{i=1}^{n_Q} (2Z_{\mathrm{LT}}(G_{\Sigma_i}, 2J)).$$

•
$$Z_{2-\text{Ising}}(J) = \sum_{Q} W(Q).$$

Développement mixte de la fonction de partition

$$W(Q) = \mathcal{C}(\prod_{e \in Q} e^{-2J_{e^*}}) \prod_{i=1}^{n_Q} (2Z_{\mathrm{LT}}(G_{\Sigma_i}, 2J)).$$

ldée : utiliser la dualité haute/basse température sur chaque morceau Σ_i .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Développement mixte de la fonction de partition

En combinant les termes :

Proposition

$$Z_{2\text{-Ising}} = \sum_{\substack{(Q,Q^*) \\ Q \cap Q^* = \emptyset}} \prod_{e \in Q} \left(\frac{2e^{-2J_{e^*}}}{1 + e^{-4J_{e^*}}} \right) \prod_{e^* \in Q^*} \left(\frac{1 - e^{-4J_{e^*}}}{1 + e^{-4J_{e^*}}} \right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Contours (Q, Q^*) et quadripavages

graphe des dimères G^Q : décoration du graphe médial $(G^\diamond)^*$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

- Wu-Lin, Nienhuis, Dubédat
- graphe des dimères biparti (pas comme Fisher)
- couplage plutôt que correspondance

Modèle d'Ising XOR isoradial critique

- G graphe isoradial infini
- définition (explicite et locale) pour la mesure de probabilité sur XOR/quadripavages
- ▶ fonction de hauteur sur les quadripavages sur les faces de G^Q
 - La fonction hauteur est définie sur les faces de G^Q
 - ► Si f et f' sont séparées par une arête wb avec angle associé θ_{wb}, avec b à gauche en passant de f à f' :

$$h^M(f') - h^M(f) = rac{ heta_{wb}}{\pi} - \mathbb{I}_{\{wb\}}(M).$$

Conjecture (Wilson)

La limite d'échelle des contours séparant les amas de spins ± 1 dans le modèle d'Ising XOR critique sont les lignes de niveau du champ libre gaussien dont l'écartement est $\sqrt{2}$ fois plus important que pour le modèle des doubles dimères sur le réseau carré.

Théorème (B-de Tilière)

Les configurations monochromatiques du double modèle d'Ising critique ont la même loi que les lignes de niveau demi-entier de la restriction de la fonction hauteur des quadri-pavages à G^* , avec un couplage explicite.

Théorème (de Tilière)

La fonction hauteur (comme distribution aléatoire) converge faiblement en loi vers $\frac{1}{\sqrt{\pi}}$ fois le champ libre gaussien sur le plan.